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Abstract
In this document, we describe the speaker recognition sys-
tem of Hanyang University (HYU) team submitted to the text-
independent speaker verification (SV) task of the Short-duration
Speaker Verification (SdSV) Challenge 2020. The description
includes the composition of the training dataset, topologies and
training strategy of the neural speaker embedding networks,
and the evaluation results. In a nutshell, we train three neu-
ral networks that share the same backbone architecture of a
34-layered residual convolutional network yet mainly differ in
pooling methods. The networks are first pre-trained using a
large-scale out-of-domain dataset, and then fine-tuned using the
in-domain DeepMine dataset. Finally, a simple cosine similar-
ity scoring method is employed to evaluate the speaker verifi-
cation trials. In addition to the evaluation results of the SdSV
Challenge, we also report the performance of the pre-trained
speaker embedding models on the VoxCeleb1 SV benchmark.
Index Terms: speaker verification, short-duration speaker ver-
ification challenge

1. Introduction
This document describes the speaker recognition system
of Hanyang University (HYU) team submitted to the text-
independent speaker verification (SV) task of the Short-duration
Speaker Verification (SdSV) Challenge 2020. The challenge
imposed a fixed training condition on the SV systems; the Vox-
Celeb1 [1], VoxCeleb2 [2], and LibriSpeech [3] corpus can be
used as out-of-domain datasets, and the DeepMine [] dataset
is provided as the in-domain dataset. As for the evaluation
setup, the durations of the enrollment and the test utterances
comprising the trial set are considerably different; the former
is uniformly distributed between 3 to 120 s after a silence re-
moval, whereas the latter between 1 to 8 s. Moreover, one of
the two partitions of the trial set consisted of Persian-English
cross-language trials.

We build three neural speaker embedding networks that
share the same backbone architecture of a 34-layered residual
convolutional network (ResNet-34) [4]. The three ResNet-34
networks exploit different pooling strategies, while some of
those also adopt the recently proposed input feature augmen-
tation method [5]. Basically, we use a two-stage approach to
train the neural speaker embedding networks: they are first pre-
trained using the large-scale out-of-domain datasets, and then
fined-tuned using the in-domain dataset.

2. Dataset
The out-of-domain speech dataset was comprised of the Vox-
Celeb1, VoxCeleb2, and LibriSpeech corpora. We applied the
standard data augmentation method to the entire set of utter-
ances based on the Kaldi [6] recipe, which created four more

copies of the original speech dataset with the following types of
corruptions:

• reverberation using simulated room impulse responses

• a variety of foreground noises

• simulated babbling background noise

• background music noise.

Next, from the augmented set of utterances, we filtered out
those with durations less than 4 s, and also excluded the speak-
ers with the number of utterances less than 8. Finally, after cut-
ting out a small portion for validation purposes, we obtained a
training set comprising 6,728,250 utterances from 9,658 speak-
ers and a validation set of 5,000 utterances from 200 speakers.
Note that the 40 speakers in the VoxCeleb1 dataset, whose name
starts with ‘E’, were not included in both the training and val-
idation datasets, and later used to examine the performance of
the SV systems on the VoxCeleb1 SV benchmark.

To prepare the in-domain training dataset, the abovemen-
tioned filtering and augmentation processes were also applied
to the DeepMine Task2 Train partition. As a result, we obtained
a training set comprising 404,729 utterances from 588 speakers
and a validation set of 5,000 utterances from 200 speakers

Finally, we extracted 56-dimensional log mel-filterbank
energies (MFBEs) from the entire dataset, and the MFBEs
were used as the input acoustic features for training the neu-
ral speaker embedding networks. The window and hop size for
the acoustic feature extraction were set to 25 ms and 10 ms, re-
spectively. The energy-based voice activity detection algorithm
provided in Kaldi [6] was used to remove the silence frames
from the sequence of MFBEs.

3. Neural speaker embedding networks
3.1. Backbone architecture

Since the neural networks designed for the challenge have an
identical structure before the pooling layer, we only describe
the shared architecture here and leave the specifications of the
rest for the following subsections. Table. 1 presents the layer
configurations of the ResNet-34 architecture. Each residual
convolution block (ResBlock) consists of a series of batch nor-
malization (BN) [7], rectified linear unit (ReLU) nonlinearity,
and 2D convolution (Conv2D) operations. To be more specific,
given the input feature maps, a ResBlock performs BN–ReLU–
Conv2D–BN–ReLU–Conv2D operations followed by an addi-
tive shortcut connection of the input. In the forward path,
only the first Conv2D and ResBlock keep the size of the fea-
ture maps, while the rest of the ResBlocks downsize the fea-
ture maps in the first Conv2D layer within each block. All the
Conv2D operations are performed with a kernel of size 3×3,
except for the 1×1 Conv2D layers that downsample the fea-
ture maps prior to the additive shortcut connections. On top of
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each output of the Conv2D-0 and ResBlocks, an average pool-
ing operation is performed over the frequency axis (Average-
Freq). The frequency-pooled feature maps are passed to the
pooling layers, which will be described in the next subsection.

It can be noted that the sliding-window mean subtraction
(SWMS) operation is implemented as a part of the network to
normalize the input features. Identical to the Kaldi’s imple-
mentation, the SWMS operation subtracts the mean of the win-
dowed input features in a sliding-window manner if the number
of time frames is greater than 300; otherwise, it simply applies
a global mean subtraction.

Table 1: Backbone architecture of the ResNet-34-based neural
speaker embedding model. (T is the number of time frames in
an input feature sequence.)

Name Conv. Ops. Output
Input - 1× 56× T

SWMS - 1× 56× T
Conv2D-0 3× 3, 32 32× 56× T

AverageFreq-0 - 32× T

ResBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 32× 56× T

AverageFreq-1 - 32× T

ResBlock-2
[
3× 3, 64
3× 3, 64

]
× 4 64× 28× T/2

AverageFreq-2 - 64× T/2

ResBlock-3
[
3× 3, 128
3× 3, 128

]
× 6 128× 14× T/4

AverageFreq-3 - 128× T/4

ResBlock-4
[
3× 3, 256
3× 3, 256

]
× 3 256× 7× T/8

AverageFreq-4 - 256× T/8

3.2. Model specifications

Three different neural speaker embedding models are con-
tructed, each of which employs a unique pooling strategy.
Based on the observations from the recent studies that success-
fully boosted the performance of the TI SV systems [8, 9, 10],
we also applied pooling operations to the output feature maps
of the intermediate-level ResBlocks. The types of the pooling
operations we considered are the learnable dictionary encod-
ing (LDE) [11, 12], temporal attentive statistics (TAS) pooling
[13], and multi-head LDE (MHLDE) which was devised as an
analogue of the multi-head TAS pooling [13] for the LDE. Be-
low are the specifications of the three neural speaker embedding
networks.

3.2.1. ResNet-34 with hierarchical LDE pooling

The first neural speaker embedding model employs the LDE
pooling to each of the frequency-averaged intermediate-level
output features. Table. 2 summarizes the pooling strategy for
the first model. As shown in the table, the LDE learns to ex-
tract a pre-defined number of code vectors given a variable-
length sequence of input features. Note that the dimension of
the LDE output is determined as the multiplication of that of
the input and the number of codes in a dictionary. Finally, the
outputs of the LDE pooling layers are concatenated to a 22,016-
dimensional code vector and passed to a dense layer with 144
hidden units. The dense layer compises an affine transform fol-
lowed by a BN, and the speaker embedding is extracted from

this layer, immediately after the BN. As multiple LDE pool-
ings are applied to the intermediate-level features of different
hierarchies, we simply denote the employed pooling strategy
as hierarchical LDE (HLDE) and the corresponding model as
ResNet34-HLDE.

Table 2: Specifications of the hierarchical LDE pooling opera-
tions.

Name #codes Input Output
LDEpool-0 8 32× T 256
LDEpool-1 8 32× T 256
LDEpool-2 16 64× T/2 1,024
LDEpool-3 32 128× T/4 4,096
LDEpool-4 64 256× T/8 16,384

Concat - 22,016
Dense-1 22,016 144

Table 3: Specifications of the hierarchical TAS pooling opera-
tions.

Name Input Output
TASpool-0 32× T 256
TASpool-1 32× T 256
TASpool-2 64× T/2 128
TASpool-3 128× T/4 256
TASpool-4 256× T/8 512

Concat - 1,024
Dense-1 1,024 256

Table 4: Specifications of the BLSTM-based input feature aug-
mentation method [5].

Name Input Output
BLSTM-0 1× 56× T 1× 256× T
Dense-0 1× 256× T 1× 840× T
Reshape 1× 840× T 15× 56× T

Concat
[
1× 56× T
15× 56× T

]
16× 56× T

3.2.2. BLResNet34 with hierarchical TAS pooling

In the second model configuration, the LDE poolings used in
the first model are replaced by the TAS poolings. Table. 3
summarizes the pooling strategy for the second model, where
the dimension of the output is twice of that of the input due to
the concatenation of the mean and the standard deviation vec-
tors. Herein, we applied length normalization to the mean and
the standard deviation vectors, which contrained both vectors to
have unit norms. The statistics computed from multiple inter-
mediate layer outputs are concatenated to a 1,024-dimensional
vector and passed to a dense layer with 256 hidden units. In
addition to the replacement of the pooling strategy, we also
adopted the recently proposed bi-directional long short-term
memory (BLSTM)-based input feature augmentation method
[5]. Table. 4 presents the adopted augmentation method. First,
the sequence of 56-dimensional MFBEs are processed by a sin-
gle BLSTM layer with 128 hidden units for each direction, and
then the output sequence is linearly transformed to a sequence
of 840-dimensional feature vectors. Subsequently, each of the
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840-dimensional feature vectors in a sequence is reshaped to
be treated as 56-dimensional features stacked along the channel
axis, and then concatenated to the input MFBEs. Finally, these
channel-augmented stacked representations are directly used as
the inputs for the ResNet34 model. We denote this model as
BLResNet34-HTAS.

3.2.3. BLResNet34 with hierarchical MHLDE pooling

For the last model configuration, we simply replaced the TAS
poolings with the MHLDE poolings. We denote this model as
BLResNet34-HMHLDE.

4. Training and evaluation
Since the provided in-domain DeepMine dataset is somewhat
language-specific, we choose to first pre-train the speaker em-
bedding networks using the large-scale out-of-domain datasets,
and then fine-tune the networks using the in-domain dataset. All
the neural networks were implemented using PyTorch [14], and
trained on a single NVIDIA RTX 2080 Ti GPU.

4.1. Pre-training

In the pre-training stage, all the networks were trained to clas-
sify the 9,658 speaker identities using the additive margin soft-
max (AMSoftmax) [15] loss function defined as follows:

LAM =
1

N

N∑
i=1

−log
ecos(θyi,i)−m

ecos(θyi,i)−m +
∑C
j 6=yi e

cos(θj,i)
, (1)

where C is the number of classes, N is the number of samples
in a mini-batch, i is the sample index, yi ∈ {1, 2, . . . , C} is the
class label of the i-th sample, and θj,i denotes the angle between
the j-th column vector of the weight matrix and the output of
the penultimate dense layer computed from the i-th sample. We
set the value of the margin term, m, to 0.2.

We used the hyperparameter settings and training schemes
similar to those described in [16]. A single mini-batch was
composed by gathering 64 randomly cropped chunks of MF-
BEs with a duration of 200 frames, and a single training epoch
was defined as the iterations over 20,000 mini-batches. The
neural networks were trained using the stochastic gradient de-
scent (SGD) optimizer with an initial learning rate of 0.1, which
was annealed by half whenever the validation loss did not im-
prove for three consecutive epochs. The training stopped either
if the number of epoch reaches 100 or the validation loss did not
improve for eight consecutive epochs. The weights of the net-
works were l2-regularized with the scaling factor of 0.01 [16],
and the dropout [17] was applied for every third mini-batch with
a rate of 0.2. We also used the same logit annealing strategy de-
scribed in [16], which gradually applies the AMSoftmax loss
from the scratch to the end of the training.

4.2. Fine-tuning

In the fine-tuning stage, we first re-initialized the output layer
of the embedding network to random values, freezed the rest of
the network layers, and then fine-tuned the output layer using
the in-domain dataset. The training was carried out in a manner
similar to that described in the pre-training stage, yet we used
the standard softmax loss without applying the additive margin
term. After that, we unfreezed the entire network and further
proceeded the fine-tuning with the AMSoftmax loss. We fixed
the learning rate to 10−6 and trained the entire network until the
validation loss converged.
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Figure 1: DET curves of the submitted systems on the progress
set.

4.3. Evaluation

The speaker embeddings were centered using the in-domain
global mean statistic and directly used to compute the cosine
similarity score for each trial. Fusion of the systems was accom-
plished by a simple score-level averaging. The performance of
the SV systems were evaluated in terms of the equal error rate
(EER) and minimum detection cost function (minDCF).

5. Results

Table 5 summarizes the SV results of the trained systems for the
SdSV Challenge. The first three rows present the performance
of the single systems, and the rest shows the results of score
fusion. Note that the submitted single and primary systems are
presented with a check mark on their left side. In the first two
columns, we also report the performance of our systems on the
VoxCeleb1 benchmark. The trial set consisted of pairs of ut-
terances that belong to the speakers whose name starts with ‘E’,
and the number of evaluated trials was 35,061 due to some miss-
ing files.

Comparing the first three rows, the single systems showed
comparable performance on the VoxCeleb1 benchmark, while
the systems with BLSTM-based feature augmentation strategy
were superior to the system without it on the SdSV Challenge
dataset. Since the BLResNet34-HTAS system slightly outper-
formed the BLResNet34-HMHLDE on the progress set of the
SdSV Challenge, we submitted the former as our single sys-
tem. As for the fusion of the systems, the combination of the
systems that adopted the BLSTM-based feature augmentation
method was slightly superior to the others, when evaluated on
the progress set. Therefore, we submitted it as our primary sys-
tem. The detection error tradeoff (DET) curves, provided by the
challenge organizers, are shown in Fig. 1, 2, and 3.
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Table 5: Speaker verification results for the VoxCeleb1 benchmark and the SdSV Challenge 2020.

System VoxCeleb1 SdSVC progress set SdSVC evaluation set
EER(%) minDCF EER(%) minDCF EER(%) minDCF

ResNet34-HLDE (1) 1.56 0.1613 2.06 0.0941 2.07 0.0944
X BLResNet34-HTAS (2) 1.60 0.1598 1.93 0.0877 1.95 0.0881

BLResNet34-HMHLDE (3) 1.52 0.1718 1.96 0.0889 1.96 0.0888
1+2 1.48 0.1555 1.90 0.0865 1.89 0.0864
1+3 1.39 0.1624 1.89 0.0865 1.88 0.0863

X 2+3 1.47 0.1512 1.84 0.0839 1.83 0.0836
1+2+3 1.41 0.1508 1.84 0.0842 1.83 0.0839
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Figure 2: DET curves of the submitted systems on the evaluation
set.
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