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Lukáš Burget, Ondřej Glembek, Alicia Lozano-Diez, Pavel Matějka, Ondřej Novotný, Oldřich
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Abstract
In this report, we describe the submission of Brno University
of Technology (BUT) team to the Short Duration Speaker Ver-
ification (SdSV) Challenge 2020. For the text-dependent task,
our primary submission consists of a simple linear logistic re-
gression score level fusion of different i-vector and x-vector
based systems. Our i-vector systems are based on concate-
nated MFCC and bottleneck features. For both types of embed-
dings, we use PLDA backends, showing the success of phrase-
dependent training of PLDA and its combination with a Gaus-
sian linear classifier phrase recognizer. For the task of text-
independent speaker verification, we combine three different x-
vector systems based on TDNN and ResNet architectures.
Index Terms: short duration speaker verification, phrase-
dependent PLDA, phrase recognizer, x-vector, TDNN, ResNet

1. Task1: text-dependent
1.1. Data and Experimental Setup

To develop our systems, we used the three databases available
for the challenge:

• VoxCeleb [1, 2]: we used the development part of Vox-
Celeb2 to train some of our x-vector extractors.

• LibriSpeech [3]: used to train some of our bottleneck
feature extractors.

• SdSV: the in-domain data taken from the DeepMine
database [4, 5]. It includes 101064 recordings of 10 dif-
ferent phrases (5 in English and 5 in Persian) from 963
speakers. We split this dataset into training and devel-
opment sets. Our SdSV training set contains 880 speak-
ers and 96533 utterances. Depending on the particular
system, it was used to train either the bottleneck fea-
ture extractors or the embedding extractors. PLDA back-
ends and the phrase recognizer for all the systems were
trained on this SdSV training set. The cohort for score
normalization (as-norm) was also created as a subset of
the SdSV training data. We used 3 enrollment segments
for each “speaker model” in this cohort to be consistent
with the evaluation protocol.
We set aside the other 83 speakers as our development
set, which we use to create trial lists for monitoring the
performance of our speaker verification systems and to
train the system fusion. Our trials are created using 3 en-
rollment segments and do not include cross-gender tri-
als. Out of the total 168420 trials, 4080 are target trials
(i.e. target-speaker/correct-phrase (TC)), 127820 corre-
spond to impostor/correct-phrase (IC), and the remaining
36520 are target-speaker/wrong-phrase (TW) non-target
trials. We respected the proportion of wrong vs. cor-
rect phrase non-target trials declared by the challenge

organizers and since they announced that majority of the
wrong phrase trials would be TW, we did not include any
impostor/wrong-phrase (IW) in our development set.

1.2. Utterance Embedding Extractors

We used two different x-vector extractors and four different i-
vector embeddings:

1.2.1. x-vector extractors

xVoxCeleb is an x-vector extractor which is a variant of the
standard Kaldi [6] TDNN model as described in [7]. This ex-
tractor is trained on VoxCeleb 16kHz audio data. The input
are 40-dimensional log Mel-filter bank outputs (with frequency
limits 20-7600Hz) extracted using 25 ms windows and 15 ms
overlap and further normalized using short-term mean normal-
ization with a sliding window of 3 s. The network stacks 9
TDNN layers (seeing a context of 11 frames on each side) be-
fore the pooling layer and the 512 dimensional x-vectors are
extracted from the layer right after the pooling.

xSdSV is an x-vector extractor trained on the in-domain
SdSV training set. In this case, we used a factorized TDNN
(F-TDNN) architecture [8] trained using Kaldi but the network
is trained to classify not just the speaker identities but also the
phrase contained in the utterance. The features used have the
same configuration as for the previous model.

1.2.2. i-vector extractors

For all our i-vector extractors, the input features are con-
catenated MFCCs and bottleneck features (BN). 19 MFCCs
plus energy are extracted from 16kHz audio recordings using
25 ms Hamming windows with 15 ms overlap and 30 filter-bank
bands. We add first and second order derivatives and discard si-
lence frames according to an energy-based VAD (mostly skip-
ping initial and final silence segments). Then, we apply cepstral
short-term mean and variance normalization with a sliding win-
dow of 3 s. Our BN features [9] are extracted from a bottleneck
layer of a neural network (NN) trained to discriminate between
given phoneme units. The BN features are a frame-wise rep-
resentation of the audio learned by this network. For training
the NNs, we used GMM-HMM ASR models to generate the
forced-alignment of the training data and this was further used
either directly as the training targets or as the initial alignment
for the Lattice-free MMI training [10]. We used three different
variants of the BN features for the different i-vector extractors
as detailed below.

We used four different i-vector extractors [11], which were
all trained on the in-domain SdSV training set using an UBM-
GMM with 1024 Gaussian components. The i-vector extractors
only differ in the BN features used and the dimensionality of the
i-vectors. The names of our i-vector systems include the dataset
used to train the BN feature extractors:
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iLibri800 extractor extracts 800-dimensional i-vectors. It
uses the so-called stacked BN NN architecture [12] trained on
LibriSpeech data. This architecture is composed of a cascade
of two bottleneck NNs, where neighboring bottleneck-outputs
from the first stage NN are stacked to define context-dependent
input features for the second stage NN [9]. The NN input fea-
tures are 40 log Mel-scale filter bank outputs extended with 3
kaldi-pitch features [13]. The bottleneck-outputs of the second
stage NN are used as the BN features.

iLibri600 is exactly the same i-vector extractor as iLibri800
except that it produces 600-dimensional i-vectors.

iSdSV400 extracts 400-dimensional i-vectors. For BN fea-
tures, it uses only the first stage NN from the stacked BN ar-
chitecture described above. This BN feature extractor is trained
only on the in-domain SdSV training data (i.e. only on the ut-
terances of the 10 phrases).

iLibriSdSV400 extracts 400-dimensional i-vectors. The
BN features for this system are extracted from a different ar-
chitecture corresponding to the Kaldi [6] chain model, which
has been modified to include the bottleneck layer1. This NN is
trained on LibriSpeech and the in-domain SdSV challenge data
together. Phonemes from LibriSpeech and SdSV data are con-
sidered as different phonemes (i.e. different classes for the NN
training) although some of the SdSV sentences are in English
just like LibriSpeech data.

1.3. Backends

1.3.1. Phrase-dependent PLDA (PD-PLDA)

Since both the development and evaluation data consist of only
10 phrases, all our PLDA backends were trained in a phrase-
dependent fashion i.e. we train 10 different PLDA models
corresponding to different phrases. Each PLDA is a two-
covariance model (i.e. both within- and across-class covari-
ance matrices are full rank). During testing, each trial is scored
with the model corresponding to its enrollment phrase. Given
the multi-session enrollment scenario, we use the by-the-book
PLDA scoring to calculate the log likelihood verification scores.
Before training or evaluating the PLDA models, the input em-
beddings are subject to the following pre-processing:

For our two x-vector based systems with PD-PLDA back-
ends (systems 2 and 4 in Table 1), we center both training and
evaluation x-vectors with the mean computed on the pooled data
from all of the phrases from the training set. Also, a global LDA
transformation reducing the dimensionality from 512 to 300 is
performed, followed by a length-normalization step.

In the case of the i-vector systems, we perform phrase-
dependent centering and LDA dimensionality reduction. Di-
mensionality after LDA is set to either 400 or 600 for different
systems as indicated in Table 1 by the number appended to the
backend names. Note that LDA transformation is applied even
for the systems with no dimensionality reduction as it has the
side effect of within-class covariance whitening, which is bene-
ficial for the following length-normalization.

1egs/librispeech/s5/local/chain/tuning/run_
tdnn_1d.sh. We removed i-vector feature adaptation and added
online-cmn. The actual architecture is a Semi-Orthogonal TDNN [14].
The bottleneck is ‘prefinal-l’, which is the last common hidden layer
preceding the split for the two objective functions in the chain model.
The bottleneck has 80 dimensions, the neural network has 2×2576
outputs and 18M model parameters

1.3.2. Heavy-tailed PLDA (HTPLDA)

For some of our x-vector systems, we used a heavy-tailed PLDA
(HTPLDA) [15] backend. The pre-processing of the data for
HTPLDA includes centering and length-normalization. The
size of the speaker subspace was set to 300 and the degrees
of freedom parameter was fixed to 2. We also experimented
with phrase-dependent HTPLDA backend similar to what we
did with the standard PLDA. However, this approach did not
outperform the results obtained with a single HTPLDA back-
end and was therefore not used.

1.3.3. Score normalization

To normalize the scores, we used adaptive symmetric score nor-
malization (as-norm) which computes an average of normalized
scores from z-norm and t-norm [16, 17, 18, 19]. As-norm is per-
formed for PD-PLDA backends and it is also phrase-dependent.
This means that the cohort for each phrase includes only the
scores from the trials with matching enrollment phrase. For
each phrase-dependent cohort we had between 618 and 779
models (enrolled from 3 utterances each). The 7011 cohort test
utterances used were shared for all the phrases. Only a part of
the cohort is selected to compute mean and variance for normal-
ization and we select the 70 highest scores.

1.3.4. GLC phrase recognizer

Given that the scenario of the text-dependent task in this chal-
lenge involves a fixed set of 10 known phrases, we trained a
phrase recognizer to be combined with the PLDA model out-
puts. This phrase recognizer is a simple Gaussian Linear Clas-
sifier (GLC) [20] trained using the i-vectors (in particular, the
ones from the best single system denoted as iLibri800) on our
training set. The GLC estimates the mean of each phrase and a
single average within-class covariance matrix shared across the
phrases.

We use this classifier in the following way: for each trial,
we calculate the log-posterior probability that the test phrase
contains the known enrollment phrase. Such scores have val-
ues close to zero for correct-phrase and very high negative
for wrong-phrase trials. These scores are then linearly com-
bined with the PLDA log-likelihood ratio verification scores us-
ing the logistic regression based score fusion described in Sec-
tion 1.3.5.

Even though this use of the GLC phrase recognizer would
not be practical in more realistic scenarios with open set of
phrases, it is a good and legal approach to deal with the spe-
cific scenario of the SdSV challenge.

1.3.5. Score fusion

In order to combine the subsystems shown in Table 1 for our pri-
mary submission, we trained a linear logistic regression model
to perform score level fusion. This model is trained on our de-
velopment set. Thus, the results reported on that set are over-
optimistic and therefore we report the results as well on the of-
ficial evaluation set (from the leaderboard after the evaluation
period).

1.4. Results

Table 1 summarizes the performance of the systems we built
for the challenge. We show results on both the official evalu-
ation set (obtained by submitting scores to the leaderboard for
the post-evaluation phase) and our development set (comprising

egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
egs/librispeech/s5/local/chain/tuning/run_tdnn_1d.sh
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Table 1: MinDCF × 100 of systems used for fusions and in final primary submission for the text-dependent task. All of them include
phrase recognizer. Results on EER are not shown but followed the same trend.

System Leaderboard Development set (all trials)

Embedding Backend no norm as-norm no+as-norm no norm as-norm no+as-norm

1 iLibri800 PD-PLDA400 8.61 6.31 5.87 3.4 2.35 1.82
2 xVoxCeleb PD-PLDA300 8.15 7.65 7.35 4.59 4.12 4.01
3 iLibriSdSV400 PD-PLDA400 7.65 7.10 6.65 2.51 2.61 2.08
4 xSdSV PD-PLDA300 11.98 9.25 9.25 6.37 4.99 4.99
5 iLibri600 PD-PLDA600 7.36 6.34 5.84 2.55 2.61 2.09
6 iSdSV400 PD-PLDA400 7.43 7.65 6.65 3.20 4.39 2.76
7 xSdSV HTPLDA300 11.97 - - 6.89 - -
8 xVoxCeleb HTPLDA300 9.20 - - 5.00 - -

Fusion 1+2 - - 4.56 - - 1.18
Fusion 1+2+3+4+ ... +8 (primary submission) - - 4.22 - - 0.85
Other fusion* (leaderboard eval period) - - 4.09 - - 0.79

TC, IC and TW trials). In order to effectively deal with TW tri-
als, all these results (even for the “individual systems”) used a
score fusion with the phrase recognizer scores. The upper part
of the table shows results for our “individual systems”, while
the bottom part shows score fusions of some of our systems.

We can see that as-norm proves to be effective as it helps in
most of the cases. The columns denoted as no+as-norm corre-
spond to a score level fusion of both original unnormalized and
as-normalized scores, which often provides further significant
improvements. This fusion can be seen only as a special score
normalization variant and, since it uses only a single trained
model (i.e. single i-vector or x-vector extractor with single PD-
PLDA based backend), we consider the resulting system to be a
“single system” (rather than fusion of multiple subsystems).

As single system we submitted our best individual i-vector
system, which is the combination of no norm and as-norm
scores in the first line of Table 1. In general, our i-vector based
systems provide consistently better results than x-vector based
systems even with the sufficient amount of training data avail-
able for the challenge. Interestingly, the xSdSV x-vector ex-
tractor trained on the in-domain SdSV training data (like our
i-vector extractors) performed somewhat worse than the xVox-
Celeb extractor.

Our primary system submitted was the fusion of all 8 in-
dividual systems shown in the penultimate line of the table.
These 8 systems were selected from a larger pool of systems
that we developed during the challenge, which comprises also
other variants of the systems described in this document (differ-
ent BN feature configurations, UBM-GMM sizes, embedding
dimensionalities, x-vector extractor architectures, score normal-
izations, etc.). To select the subsystems, we used a greedy ap-
proach where we started from the best single system (as evalu-
ated on our development set) and we always added one system
(both as-norm and no norm scores) to the fusion that led to the
biggest improvement on the development set. We also show just
the fusion of two systems (1+2), one i-vector and one x-vector
based (quite diverse systems), which yields 22% improvement
on the evaluation set compared to the single best system. This
fusion already matches the performance of the second best team
in the challenge as reported in the leaderboard. The combina-
tion with a third system would already win the challenge by a
significant margin. Thus, even though our primary submission
was the combination of 8 systems, comparable results can be
obtained by using just half of them.

The last row of the table shows results for our best per-
forming system submitted to the challenge leaderboard prior to
the deadline. This is a fusion of 11 subsystems taken from the
systems pool mentioned above. However, because of its com-
plexity, we did not select this system as our primary system.

Finally, we would like to highlight that phrase-dependent
PLDA backend in combination with the phrase recognizer
brought us a relative improvement on our development set of
up to 63% with respect to a standard PLDA backend.

2. Task2: text-independent
Our primary submission for the text-independent speaker ver-
ification task was a fusion of three x-vector based sys-
tems. We refer to them as: xVox TDNN PLDA, xVoxLibriS-
dSV ResNet COS SN and xVox ResNet PLDA SN. The de-
tails of each of them are described below.

2.1. Data and Experimental Setup

Similar to our text-dependent system, we used three databases
to develop our systems for the text-independent task:

• Development part of VoxCeleb2: to train all of the x-
vector extractors as well as for the PLDA backend of one
of the subsystems.

• LibriSpeech [3]: added to the x-vector extractor training
in one of the systems.

• Development part of SdSV-task2 data. It was split into
training and development sets. The training part was
used to train x-vector extractors and their backend mod-
els and for score normalization. It consisted of 77239
utterances from 528 speakers. The data from the rest
of the speakers (60 of them, 8525 utterances) was used
to create a trial list of approximately 250k trials, where
around 4k of them were target trials. Our development
trial list did not include any multi-session trials.

2.2. X-vector Extractors

Our three subsystems used three different x-vector extractors:
xVox TDNN PLDA uses the same network as one of the

extractors used for text-dependent task (xVoxCeleb system de-
scribed in Section 1.2.1).

xVoxLibriSdSV ResNet COS SN uses an embedding ex-
tractor based on the ResNet18 topology. It was trained on
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Table 2: MinDCF × 100 and EER of systems used for fusions and in final primary submission for the text-independent task.

System Leaderboard Development set

MinDCF × 100 EER MinDCF × 100 EER

1 xVox TDNN PLDA – – 9.85 2.62
2 xVoxLibriSdSV ResNet COS SN – – 12.34 2.65
3 xVox ResNet PLDA SN – – 9.81 2.27

Fusion 1+2 15.48 3.25 7.39 1.99
Fusion 1+2+3 13.17 2.71 6.85 1.85

data from 2000 speakers from VoxCeleb, Librispeech, and
in-domain development data (our training part of the SdSV
dataset). Large Margin Cosine Loss was used as objective with
64-dimensional Mel-filter bank outputs as the input features.

xVox ResNet PLDA SN uses an extractor based on the
ResNet34 topology [21]. This network uses 2-dimensional fea-
tures as input and processes them using 2-dimensional CNN
layers. Inspired by the x-vector topology, both mean and stan-
dard deviation are used as statistics. The network was trained on
the development part of VoxCeleb2 dataset. The details of this
model is given in Table 2 of [7]. However, note that for SdSV
we do not do apply the additive angular margin fine-tuning.

2.3. Backends

2.3.1. Gaussian PLDA

We used Gaussian PLDA as a backend to score the em-
beddings in two of our subsystems. For the first one
(xVox TDNN PLDA) we trained two PLDA models, one on in-
domain training data and the other on the data from VoxCeleb
dataset. Then, these two models were combined by interpola-
tion of within- and cross-class covariance matrices of two mod-
els. Interpolation weights were set to 0.7 for SdSV model and
0.3 for VoxCeleb one. Prior to training PLDA, the data were
centered (each dataset with its own mean), then the LDA dimen-
sionality reduction was performed from 512 to 450 dimensions.
LDA transformation was estimated on SdSV data for both of
the models (SdSV and VoxCeleb). Finally, VoxCeleb model
was a two-covariance model i.e. both speaker and channel sub-
space had dimensionality 450, while the in-domain model had
a speaker subspace set to be 350 dimensional.

For xVox ResNet PLDA SN, a single PLDA was trained
on in-domain development data. The embedding preprocess-
ing included centering and length normalization. Then, two-
covariance model was trained.

Due to a large number of enroll segments in many of the
multi-session trials, we average enrollment embeddings before
the scoring.

2.3.2. Cosine distance

Our ResNet x-vector extractor based system denoted as
xVoxLibriSdSV ResNet COS SN used cosine distance scoring
as backend. No preprocessing was done to the embeddings ex-
cept for the centering where the mean was computed on SdSV
development set. Multi-session trials, as in the PLDA case, are
treated by averaging enrollment x-vectors.

2.3.3. Score normalization

Score normalization was performed for two of the
subsystems: xVox ResNet PLDA SN and xVoxLibriS-

dSV ResNet COS SN. Here, as in case of text-dependent, we
used adaptive symmetric snorm. The normalization cohort was
formed of 3000 utterances from our SdSV training set. We
select 150 highest scores to compute the mean and variance for
normalization.

2.3.4. Score calibration fusion

The final submission strategy was one common fusion trained
on the labeled development set created by holding out part of
the Task2 training data. Each system provided scores that could
be subjected to score normalization. These scores were first
pre-calibrated and then passed into the fusion. The output of
the fusion was then again re-calibrated.

Both calibration and fusion were trained with logistic re-
gression optimizing the cross-entropy between the hypothesized
and true labels on a development set. Our objective was to im-
prove MinDCF error rate on the development set.

2.4. Results

The results of the individual systems as well as of the system
fusion are shown in Table 2. The first two columns of the ta-
ble present the results on the progress set i.e. those from the
challenge leaderboard. The last two columns correspond to the
results on our development set. The first three rows of the table
correspond to the performance of our individual systems on our
development set, and the rest shows the performance of fusions
of two and three individual systems.
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