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Abstract

In this report, we provide a description of our systems sub-
mitted to submitted to the Short Duration Speaker Verification
Challenge Task 2 - Text independent speaker Verification. Our
systems are based on an x-vector model trained on the Vox-
Celeb dataset with Gaussian PLDA and Discriminative Neural
PLDA backends trained on VoxCeleb and SDSVC Track 2 train
datasets. With the NPLDA, we observed significant 28% rela-
tive improvement over the regular GPLDA model.

1. Introduction
The development of i-vectors as fixed dimensional front-end
features for speaker recognition and verification tasks was intro-
duced in [1, 2]. In the recent years, neural network embeddings
trained on a speaker discrimination task were proposed as fea-
tures to replace the i-vectors. These features called x-vectors [3]
were shown to improve over the i-vectors for speaker recogni-
tion [4].

Following the extraction of x-vectors/i-vectors, different
pre-processing steps are employed to transform the embed-
dings. The common steps include linear discriminant analy-
sis (LDA) [2], unit length normalization [5] and within-class
covariance normalization (WCCN) [6]. The transformed vec-
tors are modeled with probabilistic linear discriminant analysis
(PLDA) [7]. The PLDA model is used to compute a log likeli-
hood ratio from a pair of enrollment and test embeddings which
is used to verify whether the given trial is a target or non-target.

Recently in [8, 9], we proposed a neural backend model
which jointly performs pre-processing and scoring. This model,
refered to as neural PLDA (NPLDA), operates on pairs of x-
vector embeddings (a pair of enrollment and test x-vectors), and
outputs a score that allows the decision of target versus non-
target hypotheses. The implementation using neural layers al-
lows the entire model to be learnt using a speaker verification
cost. The use of conventional cost functions like binary cross
entropy cause overfitting of the model to the training speakers,
and have generalization issues on evaluation sets. In an attempt
to avoid this, we use an approximation to the minimum detec-
tion cost (minDCF) [10] to optimize the neural backend model.

The rest of the paper is organized as follows. In Section 2,
we describe the front-end configurations used for feature pro-
cessing and x-vector extraction. Section 3 describes the pro-
posed neural network architecture used, and the connection with
generative PLDA model and the cost function which is used as
an objective to optimize the neural network. This is followed by
discussion of experiments and results in Section 4 and a brief set
of concluding remarks in Section 5.

2. Front-end Model - X-vector Extractor

In this section, we provide the description of the front-end fea-
ture extraction and x-vector model configuration.

2.1. Training

The x-vector extractor is trained entirely using speech data
extracted from combined VoxCeleb 1 [11] and VoxCeleb 2
corpora [12]. These datasets contain speech extracted from
celebrity interview videos available on YouTube, spanning a
wide range of different ethnicities, accents, professions, and
ages. For training the x-vector extractor, we use 1, 276, 888
segments from 7323 speakers selected from Vox-Celeb 1 (dev
and test), and VoxCeleb 2 (dev).

This x-vector extractor was trained using 30 dimensional
Mel-Frequency Cepstral Coefficients (MFCCs) from 25 ms
frames shifted every 10 ms using a 23-channel mel-scale filter-
bank spanning the frequency range 20 Hz - 7600 Hz. A 5-fold
augmentation strategy is used that adds four corrupted copies
of the original recordings to the training list [3, 4]. The aug-
mentation step generates 6, 384, 440 training segments for the
combined VoxCeleb set.

An extended TDNN with 12 hidden layers and rectified lin-
ear unit (RELU) non-linearities is trained to discriminate among
the nearly 7000 speakers in the training set [4]. The first 10
hidden layers operate at frame-level, while the last 2 layers op-
erate at segment-level. There is a 1500-dimensional statistics
pooling layer between the frame-level and segment-level layers
that accumulates all frame-level outputs using mean and stan-
dard deviation. After training, embeddings are extracted from
the 512 dimensional affine component of the 11th layer (i.e.,
the first segment-level layer). More details regarding the DNN
architecture and the training process can be found in [4].

3. The Neural PLDA Backend

In the proposed pairwise discriminative network (NPLDA)
(Fig. 1), we construct the pre-processing steps of LDA as first
affine layer, unit-length normalization as a non-linear activa-
tion and PLDA centering and diagonalization as another affine
transformation. The PLDA pair-wise scoring function is im-
plemented as a Quadratic layer in Fig. 1. Thus, the NPLDA
implements the pre-processing of the x-vectors and the PLDA
scoring as a neural backend. The parameters of the NPLDA
model are initialized with the baseline system and these param-
eters are learnt in a backpropagation setting.
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Figure 1: Neural PLDA Net Architecture: The two inputs xe
and xt are the enrollment and test x-vectors respectively.

3.1. Soft Detection Cost

The normalized detection cost function (DCF) [10] is defined
as:

CNorm(β, θ) = PMiss(θ) + βPFA(θ) (1)

where β is an application based weight defined as

β =
CFA(1− Ptarget)
CMissPtarget

(2)

where CMiss and CFA are the costs assigned to miss and false
alarms, and Ptarget is the prior probability of a target trial.
PMiss and PFA are the probability of miss and false alarms
respectively, and are computed by applying a detection thresh-
old of θ to the log-likelihood ratios.

PMiss(θ) =

∑N
i=1 ti1(si < θ)∑N

i=1 ti
(3)

PFA(θ) =

∑N
i=1(1− ti)1(si ≥ θ)∑N

i=1(1− ti)
. (4)

Here, si is the score (LLR) output by the model, ti is the ground
truth variable for trial i. That is, ti = 0 if trial i is a target trial,
and ti = 1 if it is a non-target trial. 1 is the indicator function.
The normalized detection cost function (eq. 1) is not a smooth
function of the parameters due to the step discontinuity induced
by the indicator function 1, and hence, it cannot be used as
an objective function in a neural network. We propose a dif-
ferentiable approximation of the normalized detection cost by
approximating the indicator function with a sigmoid function.

P (soft)
Miss(θ) =

∑N
i=1 ti [1−Σ(α(si − θ))]∑N

i=1 ti
(5)

P (soft)
FA (θ) =

∑N
i=1(1− ti)Σ(α(si − θ))∑N

i=1(1− ti)
(6)

By choosing a large enough value for the warping factor α, the
approximation can be made arbitrarily close to the actual detec-
tion cost function for a wide range of thresholds.

The primary cost metric of the SDSVC challenge is the
normalized detection cost function (actDCF) computed at the
threshold of log β applied to the LLRs. This is given by

CPrimary = CNorm(β), log βe) (7)

where β = 9.9. We compute the Neural PLDA loss function as

LPrimary = C (soft)
Norm(β, θ) (8)

where θ is the thresholds which minimizes LPrimary when
included as a model parameter. The minimum detection cost
(minDCF) is achieved at a threshold where the DCF is mini-
mized.

minDCF = min
θ

CNorm(β, θ) (9)

In other words, it is the best cost that can be achieved through
calibration of the scores. We include these thresholds in the
set of parameters that the neural network learns to minimize
minDCF through backpropagation of the soft detection cost
function LPrimary .

4. Experiments and Results
We perform several experiments with the proposed neural net
architecture and compare them with various discriminative
backends previously proposed in the literature such as the dis-
criminative PLDA [13,14] and pairwise Gaussian backend [15].
We also compare the performance with the baseline system us-
ing Kaldi recipe that implements the generative PLDA model
based scoring.

For all the pairwise generative/discriminative models, we
train the backend using randomly sampled target and non-target
pairs which are matched by gender. We perform experiments
by sampling trials from the clean VoxCeleb segments, and also
the augmented set. We sample about 6.6 million trials from the
clean set and around 33 million trials from the augmented set.

4.1. GPLDA Baseline

The primary baseline to benchmark our systems is the genera-
tive Gaussian PLDA (GPLDA) backend implementation in the
Kaldi toolkit. The Kaldi implementation models the average
embedding x-vector of each training speaker. The x-vectors
are centered, dimensionality reduced using LDA to 170 dimen-
sions, followed by unit length normalization. The linear trans-
formations and the GPLDA matrices are used to initialize the
proposed pairwise PLDA network.

4.2. Neural PLDA (NPLDA)

Before the gender labels of the train dataset were released, we
trained a gender classifier using the VoxCeleb dataset to assign
gender labels to the SDSVC Task-2 train set. We then manu-
ally generated gender matched target and non-target trials from
the VoxCeleb and SDSVC datasets separately. All the trials
were pooled into batches, split into batches of size 2048 trials,
which were used to train the NPLDA model. We initialized the
model with the pretrained GPLDA from Kaldi, and optimized
the NPLDA network with the soft detection cost function. This
is our primary submission which is also the single best system.

Model PLDA Train Dataset MinDCF on
SDSVC progress set

GPLDA VoxCeleb 0.386
GPLDA VoxCeleb Aug 0.354
GPLDA SDSVC Task 2 - Train 0.352

NPLDA VoxCeleb +
SDSVC Task 2 - Train 0.253

Table 1: Performances of Submitted Systems
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5. Summary and Conclusions
By participating in THE SDSVC challenge, we experimented
with the use of NPLDA as a backend for Speaker Verification
in the SDSV Challenge with a regular old x-vector model. This
gave us a significant 28% relative improvement over the regular
GPLDA model.
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“Discriminatively trained i-vector extractor for speaker verifica-
tion,” in Interspeech 2011, 2011.
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