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Abstract

This paper describes the submission of Tianjin Univer-
sity team (Team48) to the Short-duration Speaker Verification
(SdSV) Challenge 2020. The challenge is focused on the prob-
lem of performance degradation of short-duration speaker veri-
fication. In this work, we investigate different deep neural net-
works architectures with multiple large marge softmax losses to
solve the task. The primary system achieved 2.69% ERR and
0.1122 minDCFO8 on the Task 2 evaluation set respectively.

Index Terms: speaker verification, SASV, x-vector

1. Introduction

This document mainly describes the Tianjin University (TJU)
team submissions for Task 2 of Short-duration Speaker Ver-
ification (SdSV) Challenge 2020 [1]. The SdSV Challenge
2020 concentrates on the speaker verification (SV) task of short-
duration, and it expects that deep neural networks will play a
key role. The challenge has two separate tasks: text-dependent
(TD) and text-dependent (TI) speaker verification in a short du-
ration scenario.

To increase the capacity of networks well capture short-
duration information of speakers, our submitted systems are all
based on Deep Neural Networks (DNNGs). In this paper, we have
three contributions to increase the performance of TI-SV on a
short-duration scenario. First, we adopted the speaker augmen-
tation to resolve the problem of low-resource on the challenge
dataset. Then, a novel architecture of x-vector-based transfer-
learning models is proposed to enhance the discriminations of
speaker-verification networks. Finally, a series of large margin
softmax losses are used to optimizer our models.

The rest of this document is organized as follows: Section 2
describes the setup for our systems. A description of our end-to-
end-based models is given in Section 3. The results and analysis
are presented in the last section.

2. Experimental Setup
2.1. Training data

For TI-SV, we used DeepMine [2] (Task 2 Train Partition), the
train-clean-100 part and train-clean-360 part of LibriSpeech [3],
VoxCelebl [4] dev part, and VoxCeleb2 [5] dev part to train
models. The VoxCelebl and VoxCeleb2 dev part total have
7205 speakers and more than 1.2 million speeches. The train-
clean-100 part and train-clean-360 part of LibriSpeech have 251
and 921 speakers, respectively. DeepMine (Task 2 Train Parti-
tion) has 588 speakers and 85,764 utterances. The configuration
of these databases are summarized in Table 1.

Table 1: The configuration of databases.

Data Set # Speakers # Utterances
DeepMine (Task 2 Train Partition) 588 85,764
VoxCelebl dev 1,211 148,642
VoxCeleb2 dev 5,994 1,092,009
Libirispeech (train-clean-100) 251 28,539
Libirispeech (train-clean-360) 921 104,014

2.2. Training sample selection

VoxCeleb2 is extracted from videos uploaded to YouTube with
real-world scenarios. Although the real-world scene can help
neural networks obtain more robust capacity, an excessively
noisy environment affects the transfer learning model to learn
information on the target databases. To make our transform
learning models more robust on DeepMine, we built a TDNN
with AMM-Softmax to find an excessively hard sample and re-
move them.

2.3. Augmentations

The number of training speakers is a significantly important fac-
tor for the good performance of speaker-verification networks.
We adopted speaker augmentation [6] to make additional tar-
get speakers to train the end-to-end systems, helps them obtain
an accurate speaker-discriminative feature representation. For
example, the VoxCelebl dev part has 1,211 speakers, speaker
augmentation with speed factor is 0.9 and 1.1 produces 2,422
additional target speakers. In this work, we investigated the ef-
fect of different speed factors (0.9 to 1.1 and 0.8 to 1.2.) on the
performance of speaker verification systems.

We built two huge datasets for pre-training speaker
verification: The first dataset named ~Voxl1_Simple-
Vox2_DeepMine_aug2-all”, which includes three sub-datasets
with speaker augmentation (speed factors: 0.9 to 1.1), the Vox-
Celebl dev part, the simple VoxCeleb2 dev part, and DeepMine
(Task 2 Train Partition). Its total has 15,440 speakers. The
second dataset called “Vox1_Vox2_DeepMine-aug2”, which
has the VoxCelebl dev part, the VoxCeleb2 dev part, and the
DeepMine (Task 2 Train Partition) with speaker augmentation
(speed factors: 0.9 to 1.1). There are 8,969 speakers in the
second dataset.

We also constructed two in-domain datasets for train-
ing our in-domain model named ”Vox1_DeepMine-aug4” and
”DeepMine-augd”.  The “Vox1_DeepMine-aug4” includes
DeepMine (Task 2 Train Partition) with speaker augmentation
(speed factors: 0.8 to 1.2) and the VoxCelebl dev part while the
”DeepMine-aug4” include DeepMine (Task 2 Train Partition)
with speaker augmentation (speed factors: 0.8 to 1.2).
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Table 2: The architecture of E-TDNN

Layer Layer Type Context Size
1 Framel t-2:t42 512
2 Frame2 t 512
3 Frame3 t-1:t+1 512
4 Frame4 t 512
5 Frame5 t-1:t+1 512
6 Frame6 t 512
7 Frame?7 t-2:t42 512
8 Frame8 t 512
9 Frame9 t 512
10 Framel0 t 1536
11 Statistics Pooling  Full-seq 3072
12 Segment1 - 512
13 Segment2 - 512
14 AAM-Softmax - #speakers

Table 3: Comparison of performance of our primary system and
the x-vector baseline on the progress dataset of the challenge.

Evaluation Set | EER (%) minDCF08|EER (%) minDCF08

progress 2.68 0.1122 10.67 0.4319
progress-male 2.20 0.1007 8.31 0.3216
progress-female 2.98 0.1191 11.73 0.4419
progress-EN 3.03 0.1388 9.61 0.4111
progress-FA 2.17 0.0805 6.17 0.2949
progress-EN-male 2.59 0.1200 7.04 0.2759
progress-EN-female 3.29 0.1492 10.55 0.4387
progress-FA-male 1.66 0.0703 4.24 0.2053
progress-FA-female 2.50 0.0868 6.59 0.2950
progress-Farsi-TC-vs-IC-subset|  4.28 0.1448 3.91 0.1744

Table 4: Comparison of performance of our primary system and
the x-vector baseline on the evaluation dataset of the challenge.

Evaluation Set | EER (%) minDCF08|EER (%) minDCF08

evaluation 2.69 0.1118 10.67 0.4324
evaluation-male 222 0.1001 8.26 0.3239
evaluation-female 297 0.1188 11.71 0.4430
evaluation-EN 3.03 0.1380 9.58 0.4118
evaluation-FA 2.19 0.0808 6.14 0.2962
evaluation-EN-male 2.57 0.1188 7.11 0.2770
evaluation-EN-female 3.30 0.1490 10.58 0.4374
evaluation-FA-male 1.70 0.0719 4.25 0.2062
evaluation-FA-female 251 0.0863 6.53 0.2953
evaluation-Farsi-TC-vs-IC-subset|  4.30 0.1461 391 0.1725
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2.4. Feature

In the training and testing stage, we adopted 161-dimensional
spectrograms as the speech feature to fed into speaker-
verification networks.

2.5. Loss Functions

AM-Softmax. The additive margin (AM-Softmax) [7] loss in-
corporates an addictive cosine margin to Softmax loss. The for-
mulation of AM-Softmax loss is as follow.
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where N is the number of training speakers, m is the additive
cosine margin, and s is a scaling factor.
AM-Softmax. The additive angular margin (AAM-Softmax)
[8] loss introduces an additive angular margin in Softmax loss.
The equation of AAM-Softmax loss is:
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where N is the number of training speakers, m is the additive
angular margin, and s is a scaling factor.

2.6. Back-end Functions

We adopted Cosine similarity, and PLDA [9] as the back-end
function to calculate the similarity scores for speaker embed-
dings.

3. End-to-end-based Speaker Verification
Systems

3.1. X-vectors

In this work, x-vector systems were extracted embedding by
extended time-delay neural networks (E-TDNN). Our E-TDNN
included ten TDNN layer to extract frame-level features. Then
pooling layer aggregates frame-level features, followed by two
fully-connected layers with ReLU activation functions, batch
normalization, and a softmax output layer. This network was
optimized by large margin softmax losses. Embeddings of 512-
dimensional bottleneck features are extracted from the second
fully-connected layer. Table 2 summarizes the architecture of
E-TDNN.

Our E-TDNN with residual transformations based x-vector
systems were trained on two huge datasetes (as described in
2.3), respectively. These x-vector systems were served to our
transfer learning systems.

3.2. Pre-trained and Transfer-Learning Systems

Our in-domain models used the weights of layers of x-vector
systems, which pre-trained on huge datasets (as described in
2.3). All weight of layers of pre-trained systems were trained
and optimized on the in-domain dataset while transfer-learning
models only optimized fc layers. The in-domain models were
trained on ”Vox1_DeepMine-aug4” and "DeepMine-aug4” (as
described in 2.3).
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Figure 1: DET curve of submitted system on the evaluation set.

3.3. Two-tree Model

To solve the mismatch of pre-trained datasets and in-domain
datasets, we proposed the two-tree model to increased the effi-
ciency of weights of layers for transfer-learning models.

3.4. Fusion

We performed the fusion by computing the weighted average of
the scores of selected systems.

4. Results

The challenge used minimum detection cost function from
NIST SREO8 (minDCFO08) [10] and Equal Error Rate (EER)
as evaluation metrics. Table 3 and Table 4 show the perfor-
mance of submitted systems on the progress and evaluation set
of Task2, respectively. Our primary system reached 2.69% EER
and 0.1118 minDCFO8 on the evaluation set of Task2. Com-
pared with baseline, on two test sets, our primary system rela-
tively decreased minDCFO8 more than 70%.
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