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Abstract
In the following we describe systems used to generate the
DSP AGH submission to the Short-duration Speaker Verifi-
cation Challenge 2020, in which we address the problem of
speaker verification from utterances of short duration with
cross-language domain mismatch between enroll and test con-
ditions. We perform domain adaptation directly in speaker em-
bedding space using consistent generative adversarial network
(CycleGAN), and present a suitable network architecture and
loss to operate on vector embeddings.
Index Terms: short-duration speaker verification, cycleGAN,
domain adaptation, ResNet18, speaker embedding

1. Proposed system
This section provides an overview of the proposed system
for speaker verification from short-duration speaker recordings
with cross-language trials. Two major problems posed by the
SdSV Challenge 2020 dataset include: (i) different utterance
duration in enrollment (3 to 120 s) and test (up to 8 s) and (ii)
mismatch in language of enroll and test utterances, i.e. enroll
consists of only Farsi (Persian), whilst test set consists of En-
glish and Farsi, i.e. it contains unobserved data. The proposed
system, depicted in Fig. 1, enables to overcome both of these
problems. First, we develop a novel DNN architecture based on
modifying the smaller version of the ResNet, namely ResNet18,
which mainly concerned modifications to improve feature ex-
traction from audio input and gathering statistics with Learnable
Dictionary Encoding (LDE) [1, 2]. We then propose to perform
domain adaptation using shallow CycleGAN applied directly
in the speaker embedding space. Note that in contrast to ap-
proaches in [3, 4], domain adaptation in the embedding space
allows to use a much simpler DNN architecture of generators
and discriminators, which significantly reduces the computa-
tional cost. Furthermore, in contrast to [3, 4], embeddings from
both source and target domains undergo domain adaptation and
we provide adjustments in consistency and identity loss func-
tions to operate on embeddings. Target-domain embeddings
are mean centralized before they are fed to a classical target-
domain-adapted backend for speaker verification.

2. Speaker embedding extraction
In this section, we describe modifications made to the origi-
nal ResNet18 [5] architecture which facilitate audio feature ex-
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Figure 1: Diagram of the proposed system with domain adapta-
tion in embedding space using CycleGAN.

traction and propose further improvements to achieve superior
performance in speaker verification for utterances of short du-
ration.

2.1. Modified ResNet architecture (mR18)

In this section we present the basic structure of our proposed
ResNet-based architecture. In order to tackle speaker verifica-
tion of short utterances, we adjust 18-layer variant of ResNet
network architecture which we modify to enable speaker em-
bedding extraction. The diagram of the proposed modified
ResNet18-based network structure is depicted in Fig. 2(a). In-
put features are first processed with a 2D convolutional layer
with filter kernel size of 7x7, downsampling stride of 2x2 and
output of 64 channels. The output of the first layer is fed to the
residual part of the architecture, which is composed of 4 seg-
ments, each containing 2-layer blocks. In ResNet18 2D con-
volutional layer with kernel size of 3x3 is the basic unit. The
number of channels per segment respectively are {64, 128, 256,
512}. In each segment the first layer downsamples input along
the frequency axis with stride of size 2, which allows the neu-
ral network to focus more on the temporal dependency between
the frames. The residual part is followed by the statistics pool-
ing layer and two fully-connected layers with size of 512, and
a softmax layer with the number of outputs equal to the number
of classes in the trainig dataset. We will refer to this architecture
as a modified ResNet18 (mR18).

2.2. Improvements to mR18 and embedding selection

To further enhance neural network ability of generating robust
embeddings for short input sentences, we introduce the follow-
ing improvements to the mR18 network. (i) We replace standard
Rectified Linear Unit (ReLU) activation functions commonly
used e.g. in TDNNs and original ResNets, with the so-called
Leaky ReLU functions [6] with the aim to avoid zero gradient
occurrence for negative function arguments (with parameter set
to 0.2). (ii) We propose to replace the traditional statistics pool-
ing layer with the Learnable Dictionary Encoding (LDE) [1, 2]
layer, which contains dictionary of component centers, learned
during the network training. The LDE weights are estimated
for each time frame and component center, and they are subse-
quently used to obtain the encoding of the entire utterance with
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Figure 2: The proposed architectures of (a) ResNet18-based
DNNs, and (b) the shallow CycleGAN.

respect to each class center. The final vector is formed as a con-
catenation of the obtained single component encodings. In our
architecture there are 64 components. (iii) We replace the stan-
dard loss function with a margin-based softmax cross-entropy
loss function which incorporates an additive angular margin in
the angular function. This so-called Additive Angular Softmax
(AAS) [7, 8] enforces better separation between the class rep-
resentations during the neural network training. The margin
parameter is set at 0.3 and scale at 30. Architecture with so
far described improvements will be referred as improved mR18
(imR18). (iv) Since shorter utterances contain less phonetic in-
formation, we reduce the size of the two fully-connected layers
from 512 to 150. As suggested in [9], lowering the size of these
layers, and thereby also of speaker embeddings, may support
generating more discriminative speaker representation.

3. Domain adaptation in embedding space
using CycleGAN

Inspired by the use of CycleGAN [10] for domain adaptation
in speaker recognition [3, 4], we propose to perform domain
adaptation, however, in an embedding space. Operating on the
already extracted embedding vectors, as opposed to the time-
frequency domain representation of the audio signal, is bene-
ficial as it enables a significant reduction of the network com-
plexity of the CycleGAN model and avoids re-computation of
embeddings after domain adaptation. Since we perform domain
adaptation in the embedding space, we expect to achieve vector
translation to the region of the embeding space which corre-
sponds to the target domain. This non-linear transformation
can be treated as an alternative to a linear LN-WCCN [11].

3.1. CycleGAN architecture

Operating in the embedding space significantly reduces the size
of the input to the model (a single vector instead of a 2D
time-frequency representation). For that reason we experiment
mainly with shallow architectures composed of a couple of fully
connected layers with tanh activation function. The Cycle-
GAN consists of two generators and two discriminators, the

architectures of which are depicted in Fig. 2. Generators are re-
sponsible for the translation between the two domains and dis-
criminators make binary decisions if the input vector belongs
or does not belong to the domain. Both networks operate on
length normalized embeddings and the generator normalizes its
output as a post processing step. Note that although we are
interested only in a one-way mapping, CycleGAN learns the
mapping in both directions to allow regularization in the form
of cycle-consistency, which requires reconstruction of the origi-
nal features with minimum reconstruction error (by transferring
them back to the original domain).

3.2. CycleGAN loss function

Formulation of the proposed CycleGAN model in embedding
space follows the model presented in [10, 3]. The generator
GS→T is trained to learn mapping from the source domain S to
the target domain T . The training data XS and XT consists
of elements drawn from two separate distributions xS ∼ pS(x)
and xT ∼ pT (x). The discriminator DT is trained to recognize
elements from domain T . As in [3], the GAN loss function is
defined in terms of the mean square error defined as

LGANS→T
=Ex∼pS [DT (GS→T (x))

2]+Ex∼pT [(DT (x)−1)2] (1)
We define the loss functionLGANT→S

forGT→S andDS similarly.
The CycleGAN is regularized by additional losses. Since our
model operates on embeddings, we apply the cosine distance
dcos as a similarity measure. The cycle consistency loss and
the identity loss are defined, respectively, as

Lcyc =Ex∼pS [dcos(GT→S(GS→T (x)), x)]+

Ex∼pT [dcos(GS→T (GT→S(x)), x)] , (2)

Lid =Ex∼pS [dcos(GT→S(x), x)]+

Ex∼pT [dcos(GS→T (x), x)] , (3)
with the latter loss function enforcing transformation invariance
of the embeddings from the generators output domains. Finally,
the total loss for CycleGAN is given by

LTotal = LGANS→T
+ LGANT→S

+ λcycLcyc + λidLid , (4)
where λcyc and λid are weigthing coefficients.

4. Target-domain speaker verification
For system backend, we apply mean centralization, LDA di-
mension reduction with vector length normalization, PLDA
classification and score normalization using adaptive s-
normalisation [12]. Although standard processing is used in
our system backend, we focus on evaluating the influence of se-
lecting embeddings, with and without domain adaptation, from
different available datasets to appropriately adapt system back-
end for enroll and test. In particular, we show that data selection
for mean centralization largely affects the performance.

5. Datasets, system training and setup
In this section, we provide the descriptions of datasets, system
training procedure, and system setup. Core datasets used in
the development of the systems are VoxCeleb1 [13] and Vox-
Celeb2 [14] along with training subset provided in the SdSV
Challenge for Task 2 (SdSV-train). VoxCeleb datasets con-
tain 1 276 888 utterances from 7 323 speakers, while SdSV-
train contains 85 764 recordings from 588 speakers. We ap-
ply 4 types of augmentations: reverberation (RIRs from small
and medium sized rooms), babble noise with speech with 3-7
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overlapping speakers, music, and noise from MUSAN [15] cor-
pus. As input, we use 64-band Mel-filter Bank coefficients with
frames of 25 ms duration and 10 ms overlap. The energy-based
VAD with energy threshold set to 3.5 is used. In early devel-
opments, the size of fully connected layers is set to a typical
value of 512, followed by LDA reduction to 200. In latter ex-
periments, the size of fully connected is reduced to 150 with
LDA reduction to 125. In all experiments, the s-norm cohort
contains 10 000 utterances from SdSV-train with subset of 10%
of top-scoring. System structure including frontend and back-
end processing are based on the Kaldi pipeline, whereas NNs
are implemented in TensorFlow [8, 16].

In experiments with CycleGAN, the GAN-transformed
vectors are also used for backend training. CycleGAN training
requires two datasets. The target domain dataset is generated
using embedings extracted from the entire SdSV-train, i.e. from
recordings with spoken Farsi language. The source domain
dataset is composed of embeddings extracted from the subset
of English samples from VoxCeleb1 and VoxCeleb2. Both Cy-
cleGAN training sets contain the same number of embeddings.
Note that by this setup, duration mismatch between source and
target domains is additionally enforced. Since we observed that
target embeddings are not completely invariant to the Cycle-
GAN transformation, in the experiments we transform both sets
to the new target domain. CycleGAN is implemented using Py-
Torch [17]. During training, batches of size of 32 are randomly
sampled from each domain, Adam optimizer with momentum
β1 = 0.5, β2 = 0.999 is used, while other parameters follow
[10], namely: λcyc = 10.0 and λiden = 5.0. Final model is
trained for 850 epochs.

As evaluation measures we use metrics specified in the eval-
uation plan [18], namely the Equal Error Rate (EER) and mini-
mal Detection Cost Function (minDCF) with parameters set to
CMiss = 10, CFalseAlarm = 1 and PTarget = 1.

6. Single system development summary
In this section, we present the development of a single, pro-
posed system based on improvements made to initial mR18
DNN-based system. We focused on ResNet-based architec-
tures since they in our primary tests significantly outperformed
TDNN-based systems on the SdSVC dataset.

The summary of key milestones in performance gain of
speaker verification from short-duration utterances achieved by
the system proposed in this report is presented in Fig. 3. All
results presented in this section are obtained from the SdSVC
online CodaLab submission system, using 70% of SdSVC eval-
uation data.

Having selected the network architecture (mR18), we in-
crease accuracy by improvements made to the network architec-
ture and training loss introduced as described in Sec. 2.2. The
first two systems, denoted as arch and impr arch, are trained us-
ing both VoxCeleb datasets, while SdSV-train is used for back-
end adaptation. Slight improvement can be observed with the
SdSV-train added to the speaker embedding extractor training,
which is denoted as train in Fig. 3. In the next step, a much
more significant gain in performance is achieved by proper se-
lection of the short embedding size (namely reducing the size
from 500 to 150) and performing domain adaptation with the
proposed CycleGAN. Finally, we have experimented with using
different data for backend adaptation, in particular we noticed
large differences in performance in mean-centering for enroll
and test sets depending on the data used in mean calculation.
Choosing appropriate domains for performing backend adapta-

arch impr arch train emb+GAN backend

2

4

6

8

10

E
E

R

0.1

0.2

0.3

0.4

0.5

m
in

D
C

F

EER

minDCF

Figure 3: Performance gain achieved by the proposed system.

tion with mean centering, brings about final improvements in
the obtained single system results. Specifically, the highest gain
has been achieved with mean computed using 85 764 Farsi em-
beddings for enrollment and combination of Farsi and English
(171 528 embeddings) for test, which matches best the struc-
ture of evaluation trials of the SdSV challenge. In this exper-
iment we apply data augmentation to subset of 1 milion utter-
ances from VoxCeleb dataset and entire SDSV-train for LDA
and PLDA training.

7. Final results in SdSV Challenge
In this section, we present the final results obtained by the pro-
posed system with and without the application of the Cycle-
GAN, and the results obtained by the fusion of several systems
submitted in the challenge. The weights for linear fusion of the
system scores were trained using the entire SdSV-train set using
the Bosaris Toolkit [19].

Table 1 reports the EER and minDCF results obtained for
the single system and a group of fused systems. For system
fusion, we use 4 systems which achieved high performance on
the leaderboard. The submitted fused scores are obtained using
the following architectures:

1. imR18 DNN architecture with CycleGAN (we use sys-
tem without embedding size reduction);

2. imR18 DNN architecture with embedding of length 150
extracted after the 1st fully connected layer;

3. imR18 architecture with data added for network training
(i.e. Librispeech [20] dataset which contains 292 367 ut-
terances of 5 831 speakers is added to the training data);

4. mR18 DNN architecture with embedding of length 150
extracted after the 2nd fully connected layer, with LDA
dimensionality reduction to size of 75 (note that other
systems use LDA dimensionality reduction to 125).

Table 1 presents the results of our final submissions to the
SdSV Challenge 2020 for the progress and evaluation sets. We
compare the results for the baseline system, which are taken
from the leaderboard, with the proposed system containing the
described improvements to the modified ResNet18 architecture.
The single system is based on imR18 network with fully con-
nected layer size of 150 and appropriate backend adaptation.
We present two results which are obtained by the described pro-
cessing with and without the application of the CycleGAN. All
systems in final submission followed the same backend scenario
as in the last experiment described in Sec. 6.

For the Challenge submission, all fused systems are based
on the proposed modified ResNet18 architecture (either mR18
or imR18), trained using both VoxCeleb datasets and the SdSV-
train, with mean centering strategy that matches evaluation tri-
als (as in system backend in Fig. 3) and one of the systems used
in fusion involves GAN domain adaptation.
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As can be observed, in general the proposed system
achieves very significant improvement in performance over the
baseline system based on the ETDNN structure. Furthermore,
the application of the proposed CycleGAN further improves the
results. Finally, system fusion enables to achieve substantial im-
provement in performance over both considered single systems.

Table 1: Final submission results (EER[%] and minDCF).

System Progress set Evaluation set
Baseline (leaderboard) 10.67 / 0.432 10.67 / 0.432
Single system w/o GAN 4.37 / 0.183 4.36 / 0.182
Single system with GAN 4.23 / 0.177 4.21 / 0.177
Fusion 3.67 / 0.158 3.68 / 0.157

8. Conclusions
This report presents the outcome of our submission to the SdSV
2020 Challenge, in which we propose a system consisting of
ResNet-based speaker embedding and domain adaptation using
CycleGAN in speaker embedding space. The results of per-
formed experiments demonstrate that an improved ResNet18-
based architecture with the proposed domain adaptation support
cross-language system adaptation with high-accuracy SdSV.
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