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Abstract
For our submission to the SdSv challenge we have explored x-
vector extractor topologies, front-end language adaptation, then
back-end asymmetric and trial-dependent modeling. Our final
entry to the challenge is the score of a single front-end system,
in order to determine a robust and efficient speaker recognition
approach.

1. Introduction
The SdSv challenge consists of recordings from various dura-
tion in Persian or English, by Persian native speakers. The ma-
jor challenges for this evaluation are the improvement of neu-
ral network architecture, training algorithms for supervised lan-
guage adaptation and modeling to deal with short duration ut-
terances. We show in section 3 that a mismatch between en-
rollment and test data can also be taken into account, as well as
between some partitions of the evaluation trial set. This paper
presents the technical details of our front-end feature extractor
and back-end process.

2. Front-end feature extraction
The system used in SdSV Challenge is based on x-
vector/PLDA. Our x-vector system is built based on the Kaldi
recipe [1], but with some modifications. Voxceleb2 [2] and Lib-
rispeech [3] sets are combined to generate the training set for the
x-vector extractor.

The following data augmentation methods are used in this
paper. Apart from the four augmentation methods used in [1],
we also include audio compression randomly picked between
ogg, mp3 and flac codec, high-pass filtering randomly picked
in [1000Hz;3000Hz] and low-pass filtering randomly picked in
[500Hz;1500Hz]. Finally, training data consist of 8-fold aug-
mentation that combines clean data with 7 copies of augmented
data.

During the training part the utterances are further cut into
segments of 2s for the neural network training. 60-dimensional
filter banks (Fbanks) are used for the x-vector system, with
an energy-based Voice Activity Detector (VAD) to remove si-
lence. A short-time cepstral mean subtraction is applied over a
3-second sliding window.

Table 1 presents the Extended-TDNN architecture used. In
addition to this architecture, we proposed to increase the di-
mension of each layer to 1024 only for the frame-level. Except
the layer 9 which is used as an expansion layer and is fixed to
3000 dimension. The embeddings are extracted after the first
dense layer with a dimensionality of 512. The neural network
is trained for 9 epochs using natural-gradient stochastic gradient
descent and minibatch size of 128.

In order to adapt the x-vector system to new language, we
used neural network trained on Voxceleb2 and Librispeech cor-
pus as pre-trained model. We freeze on pre-trained model all

Table 1: Topology of the Extended-TDNN x-vector architecture.

Layer Layer type Context Size
1 TDNN-ReLU t-2:t+2 1024
2 Dense-ReLU t 1024
3 TDNN-ReLU t-2, t, t+2 1024
4 Dense-ReLU t 1024
5 TDNN-ReLU t-3, t, t+3 1024
6 Dense-ReLU t 1024
7 TDNN-ReLU t-4, t, t+4 1024
8 Dense-ReLU t 1024
9 Dense-ReLU t 3000

10 Pooling (mean+stddev) t 6000
11 Dense(Embedding)-ReLU t 512
12 Dense-ReLU t 512
13 Dense-Softmax t Nb spks

pre-pooling TDNN layers and re-train the other layers on Deep-
Mine corpus (using 8-fold augmentation). The neural network
is trained only with 1 epoch and minibatch size of 128 (we ob-
serve in the leaderboard that more epochs do not improve re-
sults).

3. Back-end modeling
The back-end process of LIA system is based on an asymmet-
ric model inspired by the four-covariance model (4-cov), which
we introduced in [4]. This modeling distinguishes between en-
rollment and test distributions, leading to asymmetric scoring
formulas (i.e. score(w1, w2) 6= score(w2, w1)).

The 4-cov model was initially designed for mismatch of du-
ration in [4]. The SdSv challenge could take advantage of this
model for the following purpose:

• as noticed in the evaluation plan, ” The enrollment data
in Task 2 consists of one to several variable-length utter-
ances. The net speech duration for each model is roughly
3 to 120 seconds ”. Each target speaker can be modeled
by using a x-vector sample, with a mean of 7 observa-
tions per speaker while the test utterance to compare is
unique and of short-duration (often less than 5 sec.).

• on the other hand, a non-negligible proportion of test
segments are in English (non native as the speakers are
Persian native).

Table 2 details the proportion of trials, depending on the size of
the speaker enrollment sample and on the language of test. It is
worth noting that in the trial dataset of SdSv, when the size of
the enrollment sample is lower than 5, the utterances are of short
duration (less than 5 seconds) in a main proportion. While for
enrollment sample size upper than 5, the duration of utterances
are spanning the interval 3 to 120 seconds indicated in the plan.

The 4-cov model allows to fit PLDA models specifically to
each enrollment and test distribution. Table 3 shows the differ-
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Table 2: Percentages of trials in the evaluation trial dataset,
depending on the target speaker model (how many enrollment
segments are available ?) and on the test language.

language
enrollment #segs Persian English Total

< 5 36% 38% 74%
> 5 4% 22% 26%

40% 60%

ent systems applied, depending on the trial. We apply the 4-cov
model to each type of mismatch: (mean of samples of various
size and duration) vs (one short duration utterance in Persian or
English). The model vector is the length-normalized average of
the speaker x-vector sample.

To deal with the issue of language mismatch, we apply, for
learning the PLDA model specific to short duration test seg-
ments, a two-step domain adaptation method: first, x-vectors
of a wide learning database, which is out of domain in terms
of language, are extracted, by using the front-end configuration
described above. As this neural network is re-fined to Persian
language, it partially adapts the initial data to Persian. Then the
parameters of in- and out-of domain PLDA models are adapted
by using a weighted interpolation [5]. The resulting PLDA pa-
rameters feed the second side of a 4-covariance model, therefore
specific to test utterances in English.

To better understanding, we detail one case of Table 3. Its
last row corresponds to trials with more than 5 examples for
enrollment and a test utterance in English:

• the PLDA training dataset for model 1 of 4-cov model
(the one for enrollment) is made up of length-normalized
averages of 12 vectors lasting more than 7.5 seconds, ex-
tracted from utterances of the DeepMine development
set [6]).

• the PLDA training datasets for model 2 of 4-cov model
(the one for test) are comprised of utterances lasting less
than 5 seconds, from (i) the same DeepMine develop-
ment set, (ii) our adapted English development set. The
resulting model for test interpolates the last two sub-
models (i) and (ii) [5].

The language of the test segments is estimated by a speech
detector, then the score of each trial is the one resulting from
the corresponding model, according to the detected language of
its test segment.

Taking benefit of the score normalization to enhance perfor-
mance required adapting the usual S-normalization to the spe-
cific case of an asymmetric model: the impostor cohorts are
dependent on the type of data and the order of pairwise vectors
to score must be respected.

As the score file of trials intertwines four scorings, the
scores are calibrated by using development trial datasets spe-
cific to the four cases of Table 3, all based on DeepMine devel-
opment data.

All the details about the methods described here and
specifically designed for the SdSv challenge (DNN Persian-
refinement, asymmetric and trial-dependent modelings, score
normalization) will be presented in an upcoming article.

Table 3: Datasets for trial-dependent model training. The 4-
covariance model allows to customize the model to enrollment
and test materials.

trial: 4-covariance model
enrollment test model 1 model 2
#segs language for enrollment for test

3 vectors
< 5 Persian L2-average < 5 sec.

< 5 sec.
3 vectors < 5 sec.

< 5 English L2-average &
< 5 sec. English-dev

12 vectors
> 5 Persian L2-average < 5 sec.

> 7.5sec.
12 vectors < 5 sec.

> 5 English L2-average &
> 7.5sec. English-dev

4. Results on the progress subset
4.1. During challenge period (on the progress subset)

Table 4 shows results of the successive systems submitted on
the progress set (30% of the trials). For better comparison, the
baseline of SdSv organizers is recalled in first row of the Table.
For S-normalization, we used the top 400 segments to compute
the normalization parameters of each trial.

Table 4: Results in terms of EER and DCF of the successive
systems submitted, as reported by the organizers on the progress
set (30% of the trials).

EER% minDCF
SdSv baseline 10.67 0.432
System
baseline 7.71 0.3550

+ domain adaptation 5.58 0.2510
+ 4cov-model 4.21 0.1981

+ specific S-norm 4.04 0.1771
+ trial-dependent models 3.55 0.1507

+ librispeech (DNN-training) 3.01 0.1307
+ final optimization 2.89 0.1264

The baseline system is a system trained only on VoxCeleb2
using a standard PLDA (with no domain adaptation). The base-
line system provides 7.71% of EER (0.355 minDCF). The do-
main adaptation consists in adapting the pre-trained neural net-
work model obtained with baseline system on Deepmine cor-
pus. The domain adaptation methods allows 5.58% of EER
(0.251 minDCF). The 4cov-model, S-norm and model/trial sub-
sets methods provide 3.55% of EER (0.151 minDCF) and, fi-
nally, the addition of Librispeech corpus in training corpus for
the pre-trained neural network model, followed by a final opti-
mization of configuration parameters, achieves 2.89% of EER
(minDCF 0.126).

4.2. Post-evaluation

To better assess the benefits of each of our contribution, Ta-
ble 5 shows the post-evaluation results, with systems using our
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overall DNN training dataset (including the LibriSpeech cor-
pus, belatedly added during the challenge phase). Efficiency of
the different stages of our final system is clearly demonstrated,
leading to a competitive speaker detection accuracy. Relevance
of asymmetric 4-cov modeling is also highlighted, firstly for
dealing with enrollment-test mismatch, secondly to fit model to
trial-subset specificity.

Table 5: Post-evaluation results of our different contributions
on the full evaluation. Unlike Table 4, all the systems are based
on the same DNN learning dataset.

EER% minDCF
baseline 7.38 0.3682

+ language adaptation 4.42 0.1823
+ 4cov-model 3.28 0.1554

+ specific S-norm 3.15 0.1427
+ trial-dependent models 2.88 0.1261

5. Conclusions
The SdSv challenge allowed to test robustness of text-
independent speaker recognition systems and to propose new
approaches. The relevance of our novelties for this evaluation
was confirmed by the results we obtained. The use of asymmet-
ric modeling, taking into account the mismatch between model
speaker for enrollment and utterance of test to compare, as well
as between trial partitions, has proven its efficiency. Such situ-
ations often occur in real-life applications and the SdSv evalu-
ation provided an opportunity to demonstrate the usefulness of
these approaches.
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