
Short-duration Speaker Verification Challenge 2020 Technical Report

The IDLab Short-duration Speaker Verification Challenge 2020 System
Description

Jenthe Thienpondt, Brecht Desplanques, Kris Demuynck

IDLab, Department of Electronics and Information Systems, imec - Ghent University, Belgium
jenthe.thienpondt@ugent.be, brecht.desplanques@ugent.be

Abstract
In this report, we describe our top-scoring IDLab submis-

sion for the text-independent task of the Short-duration Speaker
Verification (SdSV) Challenge 2020. The challenge provides a
difficult set of speaker verification trials with varying degrees of
phonetic overlap. Our submission is based on our recently pro-
posed state-of-the-art ECAPA-TDNN speaker embedding ex-
tractor. We further improved performance by using hard pro-
totype mining, a novel approach for computationally efficient
hard example mining in conjunction with the AAM softmax
loss function. The importance of proper s-normalization im-
poster cohort selection in this challenge proved crucial, which
we further improved by introducing a language-dependent off-
set. A fusion of five systems with minor topological alterations
resulted in a final MinDCF and EER of 0.065 and 1.45% re-
spectively on the SdSVC 2020 evaluation set.
Index Terms: speaker recognition, cross-lingual speaker veri-
fication, x-vectors, SdSV Challenge 2020

1. SdSVC IDLab submission
This section is a system description of the IDLab SdSVC fi-
nal submission. We start with a single system ECAPA-TDNN
baseline [1]. The subsequent sections will tackle the problems
of domain adaptation and cross-lingual language effects present
in the SdSV Challenge data. The final subsection discusses sys-
tem fusion.

1.1. The ECAPA-TDNN baseline system

All submitted speaker verification systems make use of the
ECAPA-TDNN architecture proposed in [1]. This architecture
is based on the well-known x-vector topology [2] and introduces
several enhancements to extract more robust speaker embed-
dings. It incorporates Squeeze-Excitation SE blocks [3], multi-
scale Res2Net [4] features, multi-layer feature aggregation [5]
and channel-dependent attentive statistics poolings [1]. The net-
work topology is shown in Figure 1. The topology of integrated
SE-Res2Blocks can be found in Figure 2. Implementation de-
tails and performance analysis of this architecture can be found
in [1]. We deviate slightly from the original architecture by also
incorporating SE-Blocks in the residual connections.

We use all allowed training data, except the VoxCeleb1 test
partition and LibriSpeech, for which only the train-other-500
subset [6] is considered. This amounts to 9077 training speak-
ers. We create 9 additional augmented copies of the training
data following the Kaldi recipe [7] in combination with the MU-
SAN corpus (babble, noise, music) [8] and the RIR[9] dataset
(reverb). The remaining augmentations are generated with the
open-source SoX (1.25 tempo increase, 0.85 tempo decrease,
phaser and flanger) and FFmpeg (alternating opus and aac com-
pression) libraries.

Figure 1: Network topology of the ECAPA-TDNN. We denote k
for kernel size and d for dilation spacing of the Conv1D layers
or SE-Res2Blocks. C and T correspond to the channel and tem-
poral dimension of the intermediate feature-maps respectively.

The input features are 64 dimensional MFCCs from a 25 ms
window with a 10 ms frame shift. The MFCCs are normalized
through cepstral mean subtraction and no voice activity detec-
tion is applied. To avoid overfitting during the ECAPA-TDNN
training process, we take a random crop of 2 to 3 seconds of
the utterances during each iteration. Similarly, we incorporate
SpecAugment [10] as an online augmentation method which
randomly masks 0 to 5 time frames and 0 to 8 frequency bands
of the training log mel-spectrograms.

We use the Angular Additive Margin (AAM) softmax [11]
as training criterion for the model. The system is trained with
the Adam optimizer [12] until convergence on a small SdSVC
validation subset that contains about 2.5% of the Farsi training
utterances. The training protocol uses a cyclical learning rate
schedule with the triangular2 policy [13]. The learning rate is
varied between a minimum of 1e-8 and decaying maximum of
1e-3 during cycles of 130k iterations. A weight decay of 2e-
5 is applied on all weights of the model except for the AAM
softmax layer which uses a weight decay value of 2e-4. We use
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Figure 2: The SE-Res2Block of the ECAPA-TDNN architecture.
The standard Conv1D layers have a kernel size of 1. The central
Res2Net [4] Conv1D with scale dimension s = 8 expands the
temporal context through kernel size k and dilation spacing d.

a mini-batch size of 128.

The speaker enrollment models are constructed by averag-
ing the corresponding L2-normalized enrollment embeddings
produced by the final fully connected layer of the ECAPA-
TDNN. The verification trials are scored by calculating the co-
sine distance between the enrollment model and the test utter-
ance embedding. Scores are normalized using top-40 adaptive
s-normalization [14, 15]. The imposter cohort consists of speak-
ers represented by the average of all their length-normalized
training embeddings. The final scores are calibrated with lo-
gistic regression [16] on our small SdSVC validation subset.

We consider five implementations with minor topological
differences as shown in Table 1. We alternate the embedding
size between 192 and 256. The Res2Net multi scale features in-
side the SE-Res2Blocks are optionally replaced by the standard
TDNN 1-dimensional dilated convolutions. Summed indicates
if the input of each SE-Res(2)Block is the sum of the output of
all preceding SE-Res(2)Blocks instead of only considering the
output of the preceding block. The number of filters in the con-
volutional frame layersC is set to 1024, which is reduced to 512
in the bottleneck of the SE-Res(2)Blocks to limit the amount of
model parameters. However, system 5 is developed without this
constraint and the channel dimension is kept to 2048 for all fea-
ture maps in the frame layers.

1.2. Hard prototype mining

To further improve performance on the baseline, we investi-
gate how to exploit the information of the in-domain training
data more efficiently. We combine targeting harder samples and
putting more importance to target-domain samples with our pro-
posed Hard Prototype Mining (HPM) fine-tuning strategy.

We interpret the weights of the AAM softmax layer as ap-
proximations of the class-centers of the training speakers and
refer to them as speaker prototypes. As these trainable weights
are already a part of the model, there are no additional compu-
tations needed. Given batch size n and N training speakers, the

AAM softmax loss L with margin m is defined as:

L = − 1

n

n∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑N
j=1,j 6=yi e

s(cos(θj))

(1)
where θyi is the angle between the sample embedding xxxi with
corresponding speaker identity yi and the speaker prototype
WWW yi . θj is the angle with all other L2-normalized speaker
prototypes stored in a trainable matrix WWW ∈ RD×N with D
indicating the embedding size. A speaker similarity matrix
SSS ∈ RN×N can be constructed from WWWTWWW , containing the
cosine distances between all pairs of speaker prototypes.

A straightforward way of constructing batches would be
to only mine samples from the most difficult speaker pairs ac-
cording to SSS. However, this could lead to oversampling a nar-
row group of speakers which potentially degrades generaliza-
tion performance. Consequently, we construct mini-batches by
iterating randomly over all N training speakers. Each itera-
tion determines S speakers, irrespective of their similarity, for
which U random utterances are sampled from each of their I
most similar speakers, including the selected speaker. This im-
plies that S ×U × I should be equal to the batch size n. When
we have iterated over all training speakers, the similarity ma-
trix SSS is updated and the batch generating process is repeated.
Experiments indicate that given a batch size of 128, S = 16,
I = 8 and U = 1 result in good performance. We reduce
the maximum of the cyclical learning rate to 1e-4 and reduce
the cycle length to 60k iterations to fine-tune all models in our
submission.

We correct the bias towards the VoxCeleb and LibriSpeech
corpus by equalizing the sample probability for each domain.
During the construction of the batches, subsequent selections
of the S speakers cover a set of all 588 Farsi speakers and 588
random speakers from both the VoxCeleb and LibriSpeech do-
main. When the set runs empty, the similarity matrix SSS is up-
dated and 588 new speakers are randomly selected from the out-
of-domain data to allow reiteration of the batch generation pro-
cess. This process assigns more importance towards samples
from hard speakers in the target-domain, while still allowing
the network to learn from samples of challenging out-of-domain
speakers.

1.3. Adaptive s-normalization with language offset

Based on [14], we set the imposter cohort of the adaptive s-
normalization to contain in-domain Farsi data only. However,
an unknown portion of the test utterances in the SdSVC trials
is English. In case of a speaker verification trial with language
mismatch, this will result in an overestimated mean imposter
score for the Farsi enrollment model, as it will only be compared
against Farsi imposters. We introduce a language-dependent
offset in the adaptive s-normalization procedure to compensate
for this effect.

Given a trial score s(e, t) between the enrollment model
e and target utterance t, the language-dependent s-normalized
score is defined as:

s(e, t)n =
s(e, t)− µ(St)

σ(St)
+
s(e, t)− (µ(Se)− α)

σ(Se)
. (2)

with Si the set of scores of the speaker embedding i against
its top-N imposter cohort, with µ(Si) the mean of those scores
and σ(Si) the standard deviation. α is the language-dependent
compensation offset. It is defined as zero if there is no language
mismatch detected and in that case regular adaptive s-norm is
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Table 1: EER and MinDCF performance of all individual systems and final fusion on the VoxCeleb1 and SdSVC 2020 test sets. All
HPM models use our hard prototype mining technique as explained in Section 1.2. LID denotes usage of our language-dependent
s-normalization variant introduced in Section 1.3.

# System (# params) Emb. dim Res2 Summed Fine-tune VoxCeleb1 SdSVC 2020

EER(%) MinDCF EER(%) MinDCF

baseline 0.94 0.1181 2.38 0.1042
1 ECAPA-TDNN (24M) 192 no no HPM 0.85 0.0945 1.81 0.0798

HPM + LID - - 1.75 0.0781

baseline 1.03 0.1260 2.34 0.0996
2 ECAPA-TDNN (24M) 192 no yes HPM 0.96 0.1248 1.77 0.0791

HPM + LID - - 1.72 0.0775

baseline 0.86 0.0969 2.32 0.1008
3 ECAPA-TDNN (16M) 256 yes no HPM 0.81 0.1033 1.75 0.0784

HPM + LID - - 1.69 0.0764

baseline 0.88 0.1101 2.32 0.0994
4 ECAPA-TDNN (16M) 256 yes yes HPM 0.88 0.1161 1.69 0.0759

HPM + LID - - 1.63 0.0742

baseline 0.87 0.0824 2.13 0.0938
5 ECAPA-TDNN (44M) 256 yes yes HPM 0.79 0.1010 1.69 0.0759

HPM + LID - - 1.63 0.0739

Weighted fusion of 1-5 HPM + LID - - 1.45 0.0651

applied. When during test time the test utterance is detected
to be English, we enable the language offset. Given µSFA as
the expected mean imposter score of Farsi imposters against a
Farsi speaker and µSUSA as the expected mean imposter score
of USA-English imposters against a Farsi speaker, we define
this compensation offset α as µSFA − µSUSA . The mean im-
poster values can be easily estimated on the speaker prototypes
stored in the AAM softmax module by applying s-norm on the
relevant prototypes.

To detect the language of the test utterance given its embed-
ding, we train a Language Identification LID module based on
a Gaussian Backend (GB) [17] modeled on the L2-normalized
AAM speaker prototypes of the Persian and the USA speakers.
However, there will be a mismatch between the English spoken
by a native Farsi speaker and a USA citizen. To compensate for
this effect we interpolate between the GB mean vector for the
USA language class µµµUSA and the mean vector corresponding
with FarsiµµµFA and set the expected mean embedding of the En-
glish model to 0.75µµµUSA + 0.25µµµFA. This adapted language
model should be able to robustly detect English spoken by a
native Farsi speaker.

1.4. Final submission and results

The IDLab final submission for the SdSVC consists of a fusion
of the five proposed ECAPA-TDNN systems fine-tuned with
HPM combined with language-dependent s-normalization with
the LID labels extracted from System 1. The fusion is real-
ized on the score level by taking a weighted average over the
calibrated scores of each individual system. The systems that
incorporated Res2 modules were given double the weight in the
averaging compared to the other systems.

The final score-based fusion of the single systems fine-
tuned with domain-balanced HPM and language-dependent
score normalization results in an EER of 1.45% and a MinDCF
of 0.0651 as shown in Table 1. Fusion of all systems leads to

Table 2: Performance of the HPM + LID systems from Table
1 on the progression and evaluation set of the SdSV Challenge
2020

# SdSV20 Prog. SdSV20 Eval.

EER(%) MinDCF EER(%) MinDCF

1 1.75 0.0754 1.75 0.0781
2 1.72 0.0775 1.72 0.0775
3 1,69 0.0764 1.69 0.0764
4 1.63 0.0745 1.63 0.0742
5 1.63 0,0740 1.63 0.0739

Fusion 1.45 0.06541 1.45 0.0651

a relative improvement of 11% and 11.9% for the EER and
MinDCF metric respectively on the SdSVC test set over Sys-
tem 5. This shows that minor architectural variations can prove
sufficient to learn complementary speaker embeddings. Table 2
gives a comparison of our single systems on the progression and
evaluation set of the challenge. There are no significant perfor-
mance differences between the progression set and the evalua-
tion set.

2. Conclusions
In this report we provided details about our top-scoring SdSVC
2020 Challenge submission. We proposed HPM as a compu-
tationally efficient hard negative mining strategy and language-
dependent s-normalization to limit the effects of the imposter
score distribution mismatch of cross-lingual trials present in
the SdSVC evaluation set. A fusion of five fine-tuned systems
based on our ECAPA-TDNN architecture resulted in a final top-
scoring submission on the SdSVC evaluation set of 1.45% EER
and 0.0651 MinDCF value.
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