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Abstract

In this paper, we describe the NICT speaker verification sys-
tem for the text-independent task of the short-duration speaker
verification (SdSV) challenge 2020. We firstly present the fea-
ture preparation. Then, x-vector-based front-ends band back-
ends are introduced. For front-ends, we evaluated TDNN,
extended TDNN (E-TDNN), factorized TDNN (F-TDNN),
TDNN-LSTM, CNN-TDNN, and ResNet network configura-
tions. For objective loss function, besides softmax function, we
investigated angular softmax, additive angular margin softmax,
and additive margin softmax functions. For back-ends, proba-
bilistic linear discriminant analysis (PLDA), simplified PLDA,
Cosine similarity, and neural network-based PLDA are investi-
gated and explored. Finally, a greedy fusion method was used
to obtain the final score for submission. Experimental results
showed that our primary fusion yielded minDCF of 0.074 and
EER of 1.50 on the evaluation subset, which was the 2nd best
result in the text-independent speaker verification task.
Index Terms: speaker verification, short duration, SdSV chal-
lenge

1. Introduction
In this paper, we describe the NICT submission to the Short-
duration Speaker Verification (SdSV) Challenge 2020. The
main goal of the SdSV challenge 2020 is to evaluate new tech-
nologies for text-dependent and text-independent speaker veri-
fication in a short duration scenario. It is the first challenge with
a broad focus on systematic benchmark and analysis on varying
degrees of phonetic variability on short-duration speaker recog-
nition. The SdSV challenge 2020 includes two tasks, where
task 1 is defined as speaker verification in text-dependent mode:
given a test segment of speech and the target speaker’s enroll-
ment data, automatically determine whether a specific phrase
and the test segment was spoken by the target speaker. Task 2
is speaker verification in text-independent mode: given a test
segment of speech and the target speaker enrollment data, au-
tomatically determine whether the test segment was spoken by
the target speaker. Our work focus on the text-independent task,
i.e., task 2.

In this work, we firstly investigated the influence of the data
duration mismatch on front-ends and back-ends. Then, we built
x-vector-based speaker embedding systems as front-ends. We
investigated time-delay neural networks (TDNN) [1] and ex-
tended TDNN (E-TDNN) [2], factorized TDNN (F-TDNN) [3],
TDNN followed with long short-term memory (TDNN-LSTM)
recurrent neural networks, convolutional neural network TDNN
(CNN-TDNN), and residual networks (ResNet). Besides soft-
max function, we investigated angular softmax (ASoftmax) [4],
additive angular margin softmax (ArcSoftmax), and additive
margin softmax (AMSoftmax) functions [5]. After speaker em-
beddings were extracted, several probabilistic linear discrimi-
nant analysis (PLDA)-based back-ends and Cosine similarity

were used for scoring. Then, adaptive symmetric score nor-
malization (AS-Norm) [6] was used to produce well-calibrated
speaker verification scores. Finally, a greedy fusion method was
used to obtain the final score for submission.

2. Datasets and feature extraction

2.1. Training data

The SdSV challenge 2020 is a fixed training condition task
where the system should only be trained using a designated
set. The fixed training set consists of VoxCeleb 1 and 2, Lib-
riSpeech, and DeepMine datasets. DeepMine data for task 2
are the in-domain training data contains text-independent Per-
sian utterances from 588 speakers. Non-speech data is allowed
for data augmentation purposes. Other public or private speech
data and task 1 in-domain data for task 2 training are forbidden.

2.2. Enrollment and test data

The enrollment data in task 2 consists of one to several variable-
length utterances. The net speech duration for each model
is roughly 3 to 120 seconds (after applying an energy-based
VAD). Each trial in the evaluation contains a test utterance and
a target model. The duration of the test utterances varies be-
tween 1 to 8 seconds. The whole set of trials is divided into
two subsets: a progress subset (30%), and an evaluation sub-
set (70%). The progress subset is used to monitor progress on
the leaderboard. The evaluation subset is used to generate the
official results at the end of the challenge.

2.3. Data preparation and feature extraction

We followed the training data preparation of the baseline x-
vector system supplied by the SdSV challenge organizer. We
firstly combined the VoxCeleb, LibriSpeech, and DeepMine in-
domain data as the x-vector extractor training data. Then, data
augmentation (additive noise, music, babble, and reverberation)
as described in [7] was used on the whole training data. Because
of this task focused on short-duration test data, to reduce the du-
ration mismatch of the training data and test data, we picked up
examples with 2 seconds (200 frames) for network training.

Three types of acoustic features were applied, i.e., the Mel-
frequency cepstral coefficient (MFCC), perceptual linear pre-
dictive cepstrum (PLP), a log Mel-filter bank (FBANK). MFCC
features were computed using 30 Mel-filter banks. The PLP
analysis computed 20-order PLP-cepstra. FBANK features
were estimated using 40 and 60 Mel-filter banks. The feature
extraction was progressed with a frame window of 25 ms and
a shift of 10 ms. The frames of silence and low signal-to-noise
ration were removed with an energy-based voice activity detec-
tion (VAD) after doing feature extraction.
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3. Speaker embedding front-ends
The model for extracting speaker embedding representations
consists of three modules: a frame-level feature extractor, a
statistics pooling layer, and utterance-level representation lay-
ers. In this work, by fixing the statistics pooling layer and
utterance-level representation layers, we investigated the frame-
level feature extractor with several neural networks for extract-
ing the speaker embedding and different settings of the objec-
tive loss function.

3.1. Network

TDNN is the most commonly used for x-vector extraction [1].
Our TDNN network includes three time-delay layers and two
fully connected layers. There are 512 channels except for the
last one, which has 1500 channels. The kernel sizes are 5, 3,
and 3; and dilation factors are 1, 2, and 3 for time-delay layers,
respectively.

An extended TDNN architecture (E-TDNN) has been
shown its effectiveness for extracting x-vectors [8]. Compared
with TDNN, E-TDNN consists of one more time-delay layer
and three fully-connected layers. The new fully connected lay-
ers are inserted into every two time-delay layers. The kernel
sizes are 5, 3, 3, and 3; and dilation factors are 1, 2, 3, and
4, respectively. Therefore, the temporal context of E-TDNN is
wider than that of TDNN. And E-TDNN has more parameters.

In our ResNet configuration, we replaced the TDNN net-
work with a ResNet34 network [9]. A channel average pooling
was applied to the output of the final layer of the ResNet. The
dimension of the average pooling was 512. Then, the statistic
pooling and utterance-level representation were processed.

We also borrowed some effective networks from speech
recognition tasks. For example, the factorized TDNN (F-
TDNN) [3] showed its effectiveness on many speech recogni-
tion tasks than the conventional TDNN network. We evaluated
F-TDNN 1, TDNN-LSTM 2 and TDNN-LSTM with attention
3, and CNN-TDNN 4 networks [13]. In the speech recognition
task, these networks had an L2 regularization setting to over-
come overfitting, in this task, we removed the regularization
setting.

3.2. Objective loss function

In conventional speaker embedding training, softmax-based cat-
egorical cross-entropy is commonly used as the objective loss
function. In this work, besides softmax, we also evaluated an-
gular softmax (ASoftmax) [4], additive angular margin soft-
max (ArcSoftmax) and additive margin softmax (AMSoftmax)-
based functions [5].

4. Back-ends
With the extracted embedding vectors, we firstly applied in-
domain global mean subtraction on training, enrollment, and
test data. Then, linear discriminant analysis (LDA) was used to
select the most speaker relevant feature and reduce the dimen-
sion of the original x-vector. To further reduce the variabili-
ties between training data and testing data, in-domain whitening
was applied before classifier. The in-domain whitening calcu-
lated the mean and covariance of the in-domain data and applied

1egs/swbd/s5c/local/chain/tuning/run tdnn 7r.sh
2egs/swbd/s5c/local/chain/tuning/run tdnn lstm 1n.sh
3egs/tedlium/s5 r2/local/chain/tuning/run tdnn lstm attention bs 1b.sh
4egs/swbd/s5c/local/chain/tuning/run cnn tdnn 1a.sh

Network Feature Loss Back-ends MinDCF EER
E-TDNN FBANK40 Softmax PLDA 0.215 5.07
E-TDNN FBANK40 AMSoftmax PLDA 0.194 4.58
E-TDNN FBANK40 AMSoftmax NPLDA 0.139 3.10
E-TDNN FBANK40 AMsoftmax Fusion 0.124 2.67
E-TDNN FBANK40 Fusion NPLDA 0.131 2.74
E-TDNN Fusion AMSoftmax NPLDA 0.124 2.64
E-TDNN FBANK40 Fusion Fusion 0.113 2.41
E-TDNN Fusion Fusion Fusion 0.111 2.33
Fusion Fusion Fusion Fusion 0.075 1.51
Primary submission (evaluation subset) 0.074 1.50
Table 1: Fusion investigation on progress subset and results.

them to whiten the test data. Finally, length normalization was
applied to the speaker discriminant vectors.

The first classifier was the Gaussian PLDA [10] with a full
covariance residual noise term and a full-rank eigenvoice sub-
space. A simplified PLDA with 150 eigenvoices was also in-
vestigated. Finally, we further investigated Cosine similarity
and a neural PLDA (NPLDA) [11]. The parameters of a PLDA
system were used to initialize the NPLDA model, then the pa-
rameters were trained in a backpropagation setting. We used
the DeepMine training data and their augmented data as the
in-domain data. The LDA dimension was selected as 150 for
Cosine similarity and 200 for other classifiers.

After scoring, all trial results were subject to score normal-
ization. We utilized adaptive symmetric score normalization
(AS-Norm) [6] in our systems.

5. Fusion and calibration
We implemented a greedy fusion algorithm to obtain the final
submission. Firstly, all the subsystems are evaluated to obtain
minDCF and EER values. Then, the top N best subsystems are
selected as the candidate list. After that, we prepare new lists
by adding a new subsystem to the candidate list. The linear
logistic regression with the Bosaris toolkit [12] is used to fuse
and evaluate the new lists. Then, the candidate list is updated by
selecting the top N best lists. The final submission is obtained
when there is no further improvement. In this work, N was set
to 3.

6. Results
Figure 1 shows the investigation of fusion on features, loss func-
tions, and back-ends. From the results, we can see that different
features and back-ends obtained almost the same contribution
when fusion was applied. A combination of different features,
loss functions, and back-ends could further improve the perfor-
mance. Our primary submission was obtained using the pro-
posed greedy fusion method. Our primary submission yielded
minDCF of 0.074 and EER of 1.50 on the evaluation subset,
which was the 2nd best result in the text-independent task.
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