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Abstract

This paper describes the system description of the system de-
veloped by ViVoLAB research group for the Short-duration
Speaker Verification (SdSV) Challenge 2020. This challenge
is focused on the study of the speaker verification (SV) sys-
tems behaviour in a short duration scenario for text-dependent
and text-independent tasks. In this description paper, we intro-
duce the different approaches used to create our system taking
into account the lexical content since this information is relevant
for the text-dependent task. To address this, we have employed
some architectures which are focused on maintaining the tem-
poral information of the uttered phrase using deep neural net-
work combined with alignment mechanism or attention mech-
anisms with phonetic embeddings which helps to condition the
attention mask. In this challenge, the use of several databases
for training are allowed, but we have developed our architec-
tures using only the training dataset, which corresponds with
the evaluation data. Thus, we have implemented a system with
the in-domain data. The results obtained on the SdSV evalua-
tion set show that our fused system achieves competitive results
using only the in-domain data to train.

Index Terms: speaker recognition, text-dependent, short-
duration

1. Introduction

This paper presents the ViVoLab SV systems submitted to the
SdSV Challenge in the text-dependent task [1]. During the chal-
lenge, we have implemented several systems based on different
DNN architectures for the embeddings extraction. To develop
these architectures, we have employed different alternatives to
keep the order of the phonetic information [2]. With this pur-
pose, we have used architectures based on Convolution Neu-
ral Network (CNN) combined with alignment mechanisms or
Residual Networks (RN) [3] combined with attention mecha-
nisms [4, 5]. Moreover, we have added more phonetic infor-
mation to the different architectures with the use of phoneme
embeddings extracted from another neural network trained as
phoneme classification network [6, 7]. These phoneme embed-
dings are used as complement to the feature extractor. Addi-
tionally, we have explored several combinations between Linear
Discriminant Analysis (LDA) and Probabilistic Linear Discrim-
inant Analysis (PLDA) as back-end for the scoring process.

The remainder of this paper is laid out as follows. Section
2 provides a description of the datasets employed for training
of the system. In Section 3, we describe the acoustic features
used as system input. The different architectures for extracting
speaker embeddings and the training strategies are explained in
Section 4. Section 5 describes the back-end applied to obtain
the evaluation scores. Finally, Section 6 presents the results.

2. Training Datasets
The SdSV Challenge 2020 allows a fixed training set consisting
of some specific databases to develop the systems. For text-
dependent task, these datasets are VoxCeleb 1[8], VoxCeleb 2
[9], LibriSpeech [10] and DeepMine [11, 12]. We have em-
ployed LibriSpeech to train a phoneme classification network
which is used to extract phoneme embeddings. For training all
the neural network front-end systems, we have used DeepMine
train partition. We have not used VoxCeleb 1 and 2 datasets
in the training process. The evaluation data corresponds to the
DeepMine dataset as well. Thus, we have developed a system
only with the in-domain data.

3. Acoustic Features
To develop this work, we have used three different acoustic fea-
tures for training of the systems.

3.1. Log Mel-Filter Bank

Most of the systems in this work have been developed using as
input a feature vector based on mel-scale filter banks. With this
feature extractor, we obtain two log filter banks of sizes 24 and
32 which are concatenated with the log energy.

3.2. Mel-Frequency Cepstral Coefficients

As input for the other DNN systems, Mel-Frequency Cepstral
Coefficient (MFCC) feature extraction is applied over all au-
dios to convert them to the cepstral features of 20 dimensions,
and the first and second-order derivatives are computed over the
feature vector. Then, an energy-based voice activity detector is
used over them. After frame selection, features are short-time
Gaussianized with a 3-second sliding window.

3.3. Correlation

On the other hand, we have carried out some experiments using
other less frequent features which are based on the use of the
correlation of the input signals. As we will show, these features
by themselves are not the best choice to train these systems, but
a fusion with them produces remarkable improvements.

4. System Architectures
In this work, four different types of speaker embedding extrac-
tors have been developed. For all these embedding extractors,
we have used 1 dimension (1D) convolution layers instead of 2
dimension (2D) convolution layers, since this layer allows us to
operate in temporal dimension to add context information, and
at the same time, the channels are combined at each layer [2].
Each of these architectures is briefly described below.
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4.1. RN, Attention and Memory Layers

The first architecture (archA) combines RN, Self-Attention
Mechanism [4] and Memory layers [5]. Fig.1 depicts this ar-
chitecture which is composed of two main parts: the backbone
and the pooling. The backbone uses two RN blocks with three
layers each block and Rectified Linear Units (ReLU) as non-
linearities.

Furthermore, this architecture needs positional information
[4] for the self attention layers to provide a good performance.
Instead of using temporal positional information as many lan-
guage modelling applications, we use the output of a phonetic
classifier bottleneck [6, 7]. The architecture of the phonetic
classifier is an evolution of [6]. In this system we use a modi-
fication of efficient net [13] to operate with 1D group convolu-
tions as backbone. Efficient net can produce several temporal
scales. We combine them using a modification of [14], where
we substitute the linear combinations by the operation concate-
nation of channels and 1D group convolution. We concatenate
this information before each RN block.

Following these RN blocks, the pooling part alternates two
MultiHead Attention layers with two Memory layers. In the
MultiHead Attention layers, we only employ the encoder part,
which can be seen analogously as an alignment method which
allows assigning embeddings to several categories. This ap-
proach has been found useful for text-dependent tasks. Fur-
thermore, with the integration of the phoneme embeddings in
the backbone part, the performance of the attention mechanism
improves since the phoneme embeddings help to guide to the
attention mask. In addition, the use of memory layers is also
proved helpful since these layers are able to store the knowl-
edge obtained for the network during the training process. Us-
ing this layer, the input data is compared with all the keys, and
the scores obtained are used to select the keys with the highest
scores and compute the associated weight vectors. After that,
these weights are combined with the memory values of the se-
lected keys, and the output is concatenated with the output of
the previous attention mechanism.

Table 1: Topology for RN, Attention and Memory layers archi-
tecture (archA).

Layer Layer type Channels Output
1 Conv1D 128 128×T
2 ResBlock-ReLU(x3) 160 160×T
3 ResBlock-ReLU(x3) 256 256×T
4 BatchNorm1D 256 256×T
5 DotAtt 256 256×T
6 Memory 256 256×T
7 DotAtt 256 256×T
8 Memory 256 256×T
9 Mean − 256
10 FC+softmax − N

Cross-Entropy Loss

4.2. RN, Attention and Memory Layers using Group Con-
volutions

The second embedding extractor (archB) employed is a mod-
ification of the previous one. In Table 2, the description of
this second network shows that the main difference with the
first architecture is the combination of the RN blocks with
MaxMinGroup nonlinearity instead of the usual ReLU activa-
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Figure 1: Architecture for RN, Attention and Memory layers
network, composed of a backbone, a pooling and a embedding
extraction.

tions. MaxMinGroup is proposed as a variant of the activation
Max-Feature-Map (MFM) [15] which splits the channels into
two groups and concatenates the maximum, the minimum and
the original values. This activation has the advantage of that the
signals are not truncated too soon to zero as in ReLU.

Furthermore, this second architecture also employs group
convolutions instead of the usual convolution. This group con-
volution layer provides more robustness to deep architectures,
and also the computation time and the parameter size are re-
duced since this layer allows to split the usual convolution in
smaller block matrices to operate with them.

Table 2: Topology for RN, Attention and Memory layers using
group convolutions architecture (archB).

Layer Layer type Channels Output
1 Conv1D 128 128×T
2 ResBlock-MaxMinGroup(x3) 160 160×T
3 ResBlock-MaxMinGroup(x3) 256 256×T
4 BatchNorm1D 256 256×T
5 DotAtt 256 256×T
6 Memory 256 256×T
7 DotAtt 256 256×T
8 Memory 256 256×T
9 Mean − 256
10 FC+softmax − N

Cross-Entropy Loss

4.3. RN and LSTM

In order to obtain diversity, the third architecture (archC) is
based on RN and LSTM. The use of LSTM layers allows us to
capture long-term context, which is combined with the short-
term context of the convolution layers. To create this architec-
ture, as Table 3 shows, we have used two RN blocks with three
layers each block, followed by a Batch Normalization layer and
a PReLU. The second part of the configuration includes a bidi-
rectional LSTM and two dense layers.
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Table 3: Topology for RN and LSTM architecture (archC).

Layer Layer type Channels Output
Input 57-Melfb − 57×T

1 Conv1D 256 256×T
2 ResBlock-ReLU(x3) 160 160×T
3 ResBlock-ReLU(x3) 320 320×T
4 BatchNorm1D − 320×T
5 PReLU1D − 320×T
6 Bidirectional LSTM 640 640×T
7 Mean − 1280
8 FC − 512
9 FC+softmax − N

Cross-Entropy Loss

4.4. Deep Neural Network with External Alignment Inte-
gration

Note that mostly SV systems employ a DNN architecture with
an average across time to extract embeddings which dismisses
the order of the phonetic information in the utterance. How-
ever, as we are working in a text-dependent SV task is relevant
to keep the temporal structure of the uttered phrase for train-
ing the system correctly, especially when the training data is
limited [2, 16]. For this reason, in this architecture (archD),
we have replaced the global average pooling by a frame-to-state
alignment method as a new layer into the DNN architecture. In
concrete, a Gaussian Mixture Model (GMM) with a Maximum
A Posteriori (MAP) has been employed. This strategy allows us
to obtain a supervector as embedding which keeps and encodes
the temporal structure of the phrase and the speaker informa-
tion. To train this architecture, the approximated Detection Cost
Function (aDCF) [17] is optimized. This function is inspired by
DCF [18] and was chosen since is one of the main metrics in the
evaluation process for SV tasks.

Table 4: Topology for Deep Neural Network with External
Alignment Integration (archD).

Layer Layer type Channels Output
Input 60-MFCC − 60×T

1 Conv1D-LeakyReLU 64 64×T
2 Conv1D-LeakyReLU 128 128×T
3 Conv1D-LeakyReLU 32 32×T
4 Alignment T×64 32 · 64
5 Cosine − N

aDCF Loss

4.5. Training Strategies

Initially, we trained the four systems to obtain a model per
phrase, so each model was only trained with the data for the
correspondence phrase. However, after the first experiments,
we decided to train the two bigger architectures presented in 4.1
and 4.2 with all the sentences at the same time to obtain only
one model for each architecture and improve the final system
performance. Furthermore, we made different combinations of
acoustic features to train these two architectures.

5. Back-end
Once the speaker embeddings are extracted from the different
architectures, a back-end is applied over each of them. We have
employed two different alternatives in function of the training

process. When the architectures are trained to produce a model
for each phrase, firstly the embeddings are transformed using an
LDA into a new feature space of 200 dimensions that maximizes
class separability. After this transformation, mean and length
normalization are applied. To obtain the final scores, a PLDA
binary detector model is trained for each phrase to determine
whether pairs of examples are from the same speaker or not.
On the other hand, whether the embeddings are extracted from
the model trained with all the phrases, the LDA transformation
is not applied, and directly we apply the trained PLDA to obtain
the verification scores.

6. Results
In this section, we provide some results achieved with the fu-
sion of our different systems, including the best result obtained,
and at the same time, we have included the results for each sys-
tem separately with different configurations. The system fusion
adopted to obtain the primary system is a simple linear fusion
obtained over the development set, extracted from the Deep-
Mine train partition. This fusion has been made using all the
individual systems. Furthermore, the single system corresponds
with archA using log Mel FB as features.

Table 5 presents the Equal Error Rate (EER) and NIST 2008
minimum detection cost (DCF08) [19] for the baseline systems
[20, 21] and our systems.

Table 5: Experimental results on DeepMine Database evalu-
ation set, showing EER% and NIST 2008 min cost (DCF08).
These results were obtained with train set and varying the train-
ing strategies, the acoustic features and the architectures.

# Training Feat. Arch. Backend EER% DCF08
Baseline x-vector 9.05 0.529

Baseline i-vector/HMM 3.49 0.146
1 phrbyphr Log Mel FB A LDA+PLDA 4.58 0.167
2 B 5.73 0.191
3 C 6.42 0.264
4 Corr A 6.55 0.233
5 B 8.91 0.323
6 MFCC D 9.41 0.470
7 allphr Log Mel FB A PLDA 3.49 0.129
8 B 3.65 0.128
9 Corr A 4.72 0.182
10 B 4.71 0.179

Single system (progress set) 4.59 0.167
Single system (evaluation set) 4.58 0.167
Primary system (progress set) 2.56 0.088

Primary system (evaluation set) 2.61 0.088
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