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Abstract
In this report, we present the details of the systems submitted to
task 2 Short Duration Speaker Verification (SdSV) 2020 chal-
lenge. In this report, the standard MFCC features are replaced
with the slope of the spectrum along the frequency (mel-filter
slope or MFS) in the x-vector-based speaker verification sys-
tem. This report also explores the use of i-vector and x-vector
embeddings jointly by performing early fusion. The results in-
dicate while MFS improves the baseline x-vector performance,
the early fusion of i-vector and x-vector embeddings further im-
proves the performance, which suggests that the x-vector and i-
vector provide the required complementary information. Using
combined representation and various features, the final system
submitted to the challenge achieves an EER of 3.01% on the
SdSV 2020 challenge evaluation set.
Index Terms: speaker recognition, MFS, LFS, MFCC, i-vector,
x-vector, combined representation

1. Introduction
Deep neural network (DNN) based systems have recently
shown to improve speaker recognition performance. However,
recognizing speakers from short utterances is still a challeng-
ing problem. Task 2 of the short-duration speaker verification
(SdSV) 2020 challenge provides a standard benchmark for eval-
uating text-independent speaker verification systems on short
utterances (ranging from 1 to 8 seconds) [1]. This report dis-
cusses the systems developed by Team 27 for the SdSV 2020
challenge.

Speaker recognition systems using neural embeddings (x-
vectors) obtained from deep neural networks (DNN) [2] are
the current state-of-the-art. To date, most of the x-vector sys-
tems have been studied using mel frequency cepstral coeffi-
cients (MFCC) as features [3–7]. In this report, we revisit the
feature extraction part of the x-vector system using the MFS
[8, 9] features. On the evaluation set of the SdSV 2020 chal-
lenge, we show that the x-vector system trained using MFS fea-
tures performs better than traditional MFCC features.

Further in this report, we combinedly use DNN based x-
vector [2] and E-M based i-vector [10] to recognize speakers
from short utterances. On the SdSV 2020 challenge evalua-
tion, we observe that a combined representation in which both
i-vectors and x-vectors are concatenated results in significantly
improved performance.

The remainder of the report is organized as follows. Sec-
tion 2 discusses the systems developed for the challenge. Sec-
tion 3 outlines the experimental setup as per the SdSV 2020
challenge evaluation plan. The results of the proposed systems
are given in Section 4 followed by the conclusion in Section 5.
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Figure 1: Block diagram for MFS and MFCC feature extraction

2. Speaker Recognition Systems

This section gives the details of features and speaker recognition
systems developed for the challenge, which consists of the i-
vector, x-vector baseline, and their combined system.

2.1. Features

Mel-Frequency Cepstral Coefficients (MFCC) is the most com-
mon feature used in speech processing. MFCC features are
computed by applying DCT on the equally spaced filter bank
energies in the mel scale. Alternatively, in [9], Mel Filter-bank
Slope (MFS) features, which emphasize higher-order formants
better are shown to be a better feature for speaker recognition.
This is mainly because the higher-order formants are shown to
carry speaker information [9, 11]. Instead of applying DCT
on filterbank energies, the MFS features capture the variance
across the filterbank energies by estimating the slope. A de-
tailed algorithm for extracting MFS features is given in [9].
Figure 1 highlights the difference in the extraction of MFS and
MFCC features. In addition to the MFS features, Linear Filter-
bank Slope (LFS) features were also used. LFS computes the
slope on the linear filter-bank energies.

All three features were extracted using a frame-length of
25ms and a frame-shift of 10ms. MFCC features were extracted
using 30 coefficients derived from 30 filterbank energies. For
MFS features, as shown in [9], the slope was estimated using
4 consecutive filterbank energies. 40 and 80 dimensional MFS
features were extracted for the i-vector and x-vector system, re-
spectively. For LFS features only 40 features were extracted for
both the i-vector and x-vector system, owing to the time limita-
tion.
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2.2. i-vector systems

i-vectors are generative systems that model speaker variabilities
in a low dimensional domain keeping the relevant information.
In i-vector, a single total variability space (defined by T-matrix)
is used to model the statistics obtained from the universal back-
ground model (UBM) [10]. As mentioned in Section 1, both the
UBM and the T-matrix are estimated using E-M.

For building the i-vector systems, the delta and acceleration
were also computed for the features mentioned in Section 2.1. A
2048 mixture UBM was used, and the dimension of i-vector was
empirically set to 400. The i-vector systems were developed
using the Kaldi toolkit [12].

2.3. x-vector systems

Contrasting i-vector, x-vectors are discriminative-DNN based
systems that represent the relevant speaker-information in a low
dimensional space [2]. The x-vector DNN consists of few
TDNN layers that work at frame level, a statistical pooling
layer that accumulates statistics of the frame-level outputs from
TDNN layers, embedding layers that function on the segment-
level and at a final softmax output layer. After training the
DNN, x-vectors are extracted as embeddings from one of the
layers operating on segment level [2]. When trained with a large
number of speakers, the x-vectors have been shown to general-
ize better than the i-vectors[2]. The configuration of the DNN
is the same as given in [2]. x-vectors of 512 dimensions are
extracted as embeddings from the 6th layer, similar to [2]. The
x-vector system was also developed using Kaldi toolkit [12].

2.4. Combined representation

The i-vector system is trained using a generative model, while
the x-vector based system is trained using a discriminative
model. Many previous works have stated that these systems
capture complementary information. In [13, 14], the late fusion
of scores from the i-vector and x-vector technique was shown
to improve the performance of speaker diarization. In [6], a
transformation by canonical correlation analysis of i-vector and
x-vector is used to make the later generative. In [15], the same is
done using a parallel factor analysis. In this report, we show that
a simple concatenation of the i-vector and x-vectors, henceforth
referred as c-vector, gives a better result than the individual and
the late fusion system.

2.5. Back-ends

After extracting the embeddings (i-vector, x-vector, or c-
vector), they are projected to a lower-dimensional space using
LDA after mean centering. For all the embeddings, the dimen-
sion of the LDA projection was set as 200. After projecting
to the LDA subspace, embeddings are length normalized and
scored using both the PLDA [16] and cosine similarity (CS)
back-end.

3. Experimental Setup
3.1. Training data

3.1.1. Training data for i-vector and x-vector

The following corpora were used to train the i-vector (UBM and
T-matrix) and the x-vector (DNN) system:

• Development subset of the VoxCeleb1 dataset [17],
which contains over 100k utterances extracted from
YouTube videos of 1.2k speakers

• VoxCeleb2 dataset [18] which contains about 6.1k
speakers and 1 million utterances again from the
YouTube dataset

• LibriSpeech dataset [19] with 2.4k speakers and a total
duration of 1000 hours

• In-domain Deepmine dataset [20] (for task 2 [1]) with
588 speakers about 85k utterance

All the corpora, as mentioned above, were allowed to be used
as training data for the SdSV challenge 2020 [1].

For training the DNN for x-vector systems, additional data
were synthetically generated by augmenting the above data
given data with noise. The procedure and non-speech datasets
that were used to augment the training data is the same as [2].
A total of 1 million augmented utterances were randomly added
to the training data [2].

3.1.2. Training data for LDA and PLDA

Only the in-domain Deepmine dataset and the Voxceleb1
dataset were used to train the LDA and the PLDA models. But
including more data, we did not observe any significant gain in
the performance on the evaluation data set.

4. Results
The baseline system for the SdSV 2020 challenge is an x-vector
system with PLDA back-end trained only on the VoxCeleb1
and the VoxCeleb2 datasets using MFCC features. The sys-
tems were developed following the experimental setup given in
Section 3. The results of the primary and single system, along
with the baseline, are given in Table 1.

It was observed that cosine similarity gave consistently bet-
ter results than the PLDA back-end. Hence, for the final sys-
tems, we used only the cosine similarity back-end. Further, the
scores of the final systems were normalized using T-norm. For
every speaker, 200 imposters were chosen from the in-domain
training data consisting of 588 speakers. The results of the final
system are given in Table 1.

The x-vector system with MFS features and cosine simi-
larity back-end was the best performing single system on the
SdSVC 2020 evaluation set. After normalizing the scores the
system gave an EER of 3.52% (Table 1). The c-vector system,
for the MFS, LFS and MFCC features, were observed to give
an EER of 3.40%, 4.34% and 3.63%, respectively. For the pri-
mary system, we apply a late fusion on the scores of these three
systems, which resulted in an EER of 3.01% and a min-DCF
value of 0.1371.

5. Conclusion
In this report, for short utterances, we show that MFS features,
which emphasize higher-order formants, improve the perfor-
mance of x-vector systems. The late fusion over c-vectors of
different features were submitted as the primary system for the
challenge. This final system scored an EER of 3.01% and a
min-DCF of 0.1371 for the SdSV challenge.
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Table 1: Performance of the baseline and the final systems sub-
mitted to SDSVC 2020 challenge.

System

No

System

Description

Back-

end
EER

min-

DCF

a) - Challenge Baseline

1 MFCC-x-vector PLDA 10.67 0.4324

b) - Submitted Single System

2 MFS-x-vector CS* 3.52 0.1654

c) - Concatenated systems (c-vector)

3 MFCC-c-vector CS* 3.63 0.1643

4 MFS-c-vector CS* 3.40 0.1595

5 LFS-c-vector CS* 4.34 0.1968

d) - Submitted Primary System

6
Score fusion of

system 3, 4 & 5
3.01 0.1371

*score normalization was done using T-norm
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