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Abstract

In this paper, we describe the system used by Team 25 for task
1 of Short Duration Speaker Verification Challenge (SDSVC,
2020) [1]. A shared-encoder with task-specific decoders is pro-
posed to address text-dependent automatic speaker verification
(TD-ASV). An autoregressive predictive coding (APC) encoder
is pre-trained in an unsupervised manner using both out-of-
domain (LibriSpeech, VoxCeleb) and in-domain (DeepMine)
unlabeled datasets to learn generic, high-level feature represen-
tation that encapsulates speaker and phonetic content. Two task-
specific decoders were trained using labeled datasets to clas-
sify speakers (SID) and phrases (PID). Speaker embeddings ex-
tracted from the SID decoder were scored using a PLDA. SID
and PID systems were fused at the score level. There is a
51.9% relative improvement in minDCF for our system com-
pared to the fully supervised x-vector baseline on the cross-
lingual DeepMine dataset. A fusion of the x-vector/PLDA base-
line and the SID/PLDA scores prior to PID fusion further im-
proved performance by 15% indicating complementarity of the
proposed approach to the x-vector system.

Index Terms: speaker verification, unsupervised-learning,
feature-representation, shared-encoder, domain-adaptation.

1. Shared Encoder-Decoder Architecture
1.1. Autoregressive Predicitive Coding (APC) Encoder

Predictive coding has played an important role in speech pro-
cessing, especially in speech coding using linear prediction cod-
ing (LPC) [2]. LPC predicts future audio samples whereas, a
recently proposed autoregressive predictive coding [3] predicts
the features of a future frame. The idea is to utilize the input
sequence itself as labels and predict a frame n steps ahead of
the current frame to achieve unsupervised speech representation
learning. The model architecture is as shown in Figure 1.

Suppose the input speech sequence is X = (z1, z2, ..., zT),
the time shift of prediction is fixed at n, and the ground truth of
the prediction for each frame is (Z14n, Z24n, ..., TT+n ). In OI-
der to prevent the model from learning a trivial solution, we
apply a uni-directional neural network structure, as opposed to
bi-directional networks, by letting the model be aware of the
context only from history. By stacking multiple long short-
term memory (LSTM) layers and adding residual connections,
we obtain a deep LSTM network. Prior to that, a two-layer
feed-forward network is considered as the pre-net network to
transform the speech features into a hidden latent space. To-
gether with LSTMs, we denote this combined network as DL-
STM. The output of the DLSTM is then fed into a linear layer
and transferred to the input space, which means that the dimen-
sion will be the same as the input features. Mathematically, the
model architecture can be described as follows:
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Figure 1: Encoder-Decoder model architecture proposed in this
paper. The encoder is an APC model trained in an unsupervised
way to learn a generic, high-level feature representation inde-
pendent of downstream tasks. The decoders (PID and SID) are
trained in a supervised manner.

Y = Wy DLSTM (X, Wiatm) + by (1)

where W5, represents all the parameters in the DLSTM;
W and by denote the weight matrix and bias vector in the last
layer, respectively; and Y = (y1, y2, ..., y7) is the output. Con-
sidering the L1 loss as a metric distance for prediction, all the
above parameters are obtained by optimizing the following loss
function:
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1.2. Task-specific Decoder

The PID decoder is designed to distinguish between differ-
ent phrases. In order to obtain a better generalization, we
first allow the model to learn a frame-level phonetic represen-
tation with a connectionist temporal classification (CTC) [4].
Specifically, the frame-level phonetic representations are calcu-
lated by feeding the speech representations in Section 1.1 into
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a stacked bi-directional LSTM network(BLSTM). Then, the
frame-level phonetic representations are transformed into the
phoneme space, which consists of 39 phonemes and one blank
symbol. With respect to phrase classification, the frame-level
phonetic representations are averaged using a statistical pooling
layer to form a single feature vector. Two feed-forward layers
are used to transcribe the vector to output phrase-ID space, fol-
lowed by a softmax layer. The overall network is optimized by
jointly minimizing the CTC loss and the cross entropy loss:

Liotat = LoTe + MNcE, 3

where, Lcrc is the loss from the prediction of the
phonemes and Lcg is the loss arising from the classification
of the phrase. A is a parameter used to control the contribution
of the CE loss to the total loss.

The speaker-ID decoder consists of another BLSTM net-
work followed by a statistical pooling layer to extract speaker
embeddings. Speech representations obtained from the APC en-
coder in Section 1.1 are used here as input. The size of the final
transformation layer is dependent on the number of speakers in
the dataset. The speaker ID decoder is optimized by minimizing
the cross entropy loss arising from the classification of speakers.

2. Experimental Details
2.1. Datasets

The specifications of the datasets used in this paper are pro-
vided in Table 1. Utterances from LibriSpeech, VoxCelebl and
VoxCeleb2 [5] and DeepMine Part-1 [6, 7] were used for three
different tasks: 1) Unsupervised pre-training of the shared en-
coder, 2) Phrase ID training, and 3) Speaker ID training. In this
section, we provide details of the subsets of data used for each
task.

Table 1: Details of the datasets used.

# # Duration

Subset Database s Spks  (in hours)
train-librispeech ~ Librispeech 140k 5466 478.5
dev-librispeech Librispeech 2.7k 97 53
train-voxceleb VoxCeleb 1.2M 7350 2637.8
dev-voxceleb VoxCeleb 73k 7350 151.2
train-deepmine DeepMine 101k 963 91.5
dev-deepmine DeepMine 37k NA 31.6
test-deepmine DeepMine 69k NA 61.2

The in-domain training data (train-deepmine) contains
speech utterances from 963 speakers, some of whom have only
Persian phrases. The enrollment (dev-deepmine) and test utter-
ances (test-deepmine) are drawn from a fixed set of ten phrases
consisting of five Persian and five English phrases, respectively.
More details of the phrases can be found in [6].

2.1.1. Unsupervised Pre-training of Shared Encoder

The unsupervised pre-training of the shared encoder used the
out-of-domain train-librispeech subset, 500k utterance from
VoxCeleb and the in-domain train-depmine subset. Since the
APC encoder can be trained with unvoiced frames as well, no
speech activity detection (SAD) is applied. A uniform sampling
rate of 16 KHz is used across datasets. To prevent overfitting,
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a combined development set consisting of dev-librispeech, dev-
voxceleb and dev-deepmine were used for hyperparameter se-
lection.

2.1.2. Task Specific Decoder Training

For training the phrase ID decoder, 100 hours of LibriSpeech
and all utterances of train-deepmine were used. dev-librispeech
and the dev-deepmine dataset were used for hyperparameter se-
lection.

The SID decoder was trained using 1.2M utterances (7350
speakers) from the VoxCeleb dataset. Similar to the data pro-
cessing of the x-vector system in [8], the utterances were cut
into 3 second segments and augmented with noise from the MU-
SAN database [9] resulting in a total of 3.2M utterances (~ 7k
hours).

2.2. Front-End Processing

The Kaldi framework [10] was used for all front-end prepro-
cessing and feature extraction for each of the three tasks. The
features are 40 dimensional filterbanks with a frame-length of
25ms and a frame shift of 10ms. Cepstral mean and variance
normalization is applied on the features. The energy SAD (from
Kaldi), used in the speaker embedding extraction, filters out
non-speech frames.

2.3. Model Architecture
2.3.1. APC Encoder

The APC encoder DLSTM is composed of 4 layers of unidirec-
tional LSTMs with each layer consisting of 512 hidden units.
The input to the shared-encoder is 40 dimensional filter-bank
features. The shared encoder is trained in an auto-regressive
manner by minimizing the L1 loss function as described in Sec-
tion 1.

The pre-net feature embedding network of the encoder DL-
STM is made up of 2 fully-connected layers with ReLU activa-
tions. The encoder model is initialized using the Xavier uniform
initialization and a dropout of 0.1 is applied to the ReLu activa-
tion function.

During evaluation, the shared-encoder is used as a fea-
ture extractor to extract learned representations for each ut-
terance. These feature representations are the hidden RNN
states of the APC model and form a 4-dimensional tensor of
the shape (number-layers, batch-size, sequence-length, RNN-
hidden-size). In our experiments, 512 dimensional hidden states
of all 4 RNN layers of the APC model were used. Features ex-
tracted from the APC model are then fed into the task-specific
decoder for learning the corresponding speaker and phrase iden-
tities.

2.3.2. Task Specific Decoders

Two standalone decoders are trained to classify speech utter-
ances based on speakers and phrase-IDs. Each decoder is
trained and evaluated separately.

The phrase ID (PID) decoder is composed of 3 layers
of bidirectional LSTMs made up of 512 hidden units. The
output of these BLSTM layers is then fed into two differ-
ent sub-networks to predict phonemes and classify phrases.
The phoneme prediction sub-network is a 40 dimensional (39
phonemes + 1 blank space) linear layer. The phrase classifi-
cation sub-network consists of a pooling layer followed by a
fully-connected layer (400 hidden units) and a prediction layer
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of 11 outputs (10 phrases + 1 no match). Since we utilize out
of domain data which do not have phrase-ID labels, we add an
extra category for all utterances whose contents do not match
the given 10 phrase-IDs of the evaluation data. The value of A
is heuristically set to 0.2.

The speaker ID decoder is made up of 3 layers of bidi-
rectional LSTMs each consisting of 512 hidden units. This is
followed by statistical pooling, a fully-connected (dense) layer,
and a prediction layer. The dimension of the prediction layer
7350 based on the number of speakers in the training set. Dur-
ing evaluation, the bottleneck features (outputs from the dense
layer of the SID decoder) are extracted and used as speaker em-
beddings. The dimension of the fully-connected dense layer is
set at 600 similar to the x-vector system.

2.4. Model Training and Evaluation

The shared encoder was trained for 5 epochs with a learning rate
of 2¢*. The weights and biases of the shared-encoder network
were frozen after the training to ensure that the task-specific
optimization of the decoders did not modify the shared-encoder
the. Both the phrase ID and the speaker ID decoder networks
were trained in parallel to minimize their corresponding loss
functions. Decoders were trained for 5 epochs with a learning
rate of 2~ and the learning rate was annealed by a factor of
0.5 after 3 epochs.

During evaluation,the log likelihood of phrase-ID of test ut-
terance and the corresponding enrollment utterance being the
same is computed as the PID score. Speaker embeddings are
extracted from the dense layer of the SID decoder. A PLDA
classifier is used to compare the extracted speaker embeddings,
and predict target/imposter speaker decisions. Speaker embed-
dings extracted from the speaker ID decoder were centered and
projected using LDA. The LDA dimension was tuned on the
VoxCeleb training set to 200. After dimensionality reduction,
the representations were length-normalized and modeled by the
PLDA and the PLDA model was then adapted using the Deep-
Mine training data. The log-likelihood scores of the PLDA
model (SID scores) and the PID model were fused to generate
the final system prediction.

3. Results and Discussion

Table 2 provides results obtained from the text-dependent
speaker verification task of SDSVC. System performance is
compared using the normalized minimum detection cost func-
tion (minDCF) [11]. We also report the equal error rate (EER).

Two baselines were provided in the challenge evaluation
plan for this task: the x-vector system and i-vector/HMM sys-
tem. The state-of-the-art x-vector method, based on the TDNN
architecture of [8], was trained using VoxCeleb1 and VoxCeleb2
databases. Evaluation trials, as per the provided baseline, were
scored using the PLDA without any score normalization. The i-
vector/HMM method, that also takes into consideration phrase
information, was selected as the second baseline. Among the
published results, the i-vector/HMM method is the best per-
forming system on DeepMine data.

The proposed system achieves a minDCF of 0.2697 and
an EER of 6.28%. This represents a relative improvement of
51.9% in terms of minDCF (0.5611 for the x-vector baseline
versus 0.2697 for the proposed method) and 38% in terms of
EER (10.13% to 6.28%). In order to have a fair comparison
between the x-vector system and the shared-encoder system,
we fused the scores of x-vectors and PID. We observed that,
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Table 2: Results for text-dependent task of the SDSV challenge
in terms of minDCF and EER. ™ indicates baseline and + indi-
cates score-level fusion using linear regression.

Speaker ID Phrase ID . EER

System System minDCF (%)
x-vector™ None 0.5611 10.13
i-vector™ HMM 0.1472 347
x-vector PID 0.2170 4.80
SID PID 0.2697 6.28
SID + x-vector PID 0.1830 4.18

in this case, the performance of the fused x-vectors was better
than the shared encoder system. The minDCF improved rela-
tively by 19.5% (from 0.2697 to 0.2170) and the EER by 23.5%
(from 6.28% to 4.8%). Thus, the x-vector system, on its own,
is better at capturing speaker discriminatory features, than the
SID network of the proposed framework. Nevertheless, on the
overall task of TD-ASYV, the proposed system performs better
than the x-vector baseline. This improvement in performance
can be attributed to the unsupervised pre-training of the shared-
encoder using unlabeled in-domain data and the use of phonetic
information by the proposed system. As a result, our system
is better suited for the text-dependent, cross-lingual task of this
challenge in comparison to the x-vector baseline.

To further analyze the performance of the proposed system,
fusion of the x-vector/PLDA scores and the SID/PLDA scores
was performed using linear regression before fusing with PID
scores. Equal coefficients of 0.5 were chosen for this linear
regression which resulted in a 15% gain in minDCF (0.2170
to 0.1830) and a 12% relative gain in EER (4.8% to 4.18%).
These results seem to suggest that the SID system offers com-
plimentary information to the x-vector system. It is possible
that the proposed unsupervised method learns useful speaker-
discriminative information that was previously discarded when
learning representations in a supervised fashion. Combining su-
pervised and unsupervised feature representations can therefore
be advantageous in developing robust TD-ASV systems.

The performance of the i-vector/HMM method, on the other
hand, exceeded that of the proposed method by 45% (minDCF
of 0.1472 vs 0.2697). This system used hidden Markov model
(HMM) states to model time sequences and extract i-vectors for
each phrase. The i-vector/HMM approach outperforms the pro-
posed method mainly because of its capability to reject target-
wrong trials, meaning that if two different phrases were spo-
ken by the same speaker, the HMM Viterbi decoding produced
invalid statistics for such trials and consequently they were re-
jected easily [12]. In contrast, since the PID and the SID sys-
tems were fused by a simple score-level fusion, our system may
have predicted higher log-likelihoods.

4. Conclusions

In this paper, a novel model architecture comprised of a shared-
encoder with task-specific decoders was proposed for TD-ASV.
An auto-regressive predictive coding encoder was trained in an
unsupervised fashion to learn generic features independent of
the downstream task. Task-specific decoders were then opti-
mized for phrase and speaker classification. An improvement
of 52% was achieved in terms of minDCF compared to the x-
vector baseline.
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