
The Team 20 System for Short-Duration Speaker Verification Challenge 2020

Tao Jiang1, Miao Zhao1, Lin Li2, Qingyang Hong1

1School of Informatics, Xiamen University, China
2School of Electronic Science and Engineering, Xiamen University, China

qyhong@xmu.edu.cn, lilin@xmu.edu.cn

Abstract
In this paper, we present the Team 20 (T20) system for Task 1
in the Short-Duration Speaker Verification (SdSV) Challenge.
We leveraged the system pipeline from three aspects, including
the data processing, front-end training and back-end process-
ing. In addition, we have explored some training strategies such
as spectrogram augmentation and transfer learning. The experi-
mental results show that the attempts we had done are effective
and our best single system, a transfer model with spectrogram
augmentation and attentive statistic pooling, significantly out-
performs the official baseline on both progress subset and eval-
uation subset. Finally, a fusion of seven subsystems are chosen
as our primary system which yielded 0.0856 and 0.0862 in term
of minDCF, for the progress subset and evaluation subset re-
spectively.
Index Terms: speaker recognition, text-dependent, data aug-
mentation, transfer learning

1. Introduction
This paper describes the T20’s submissions for the Task 1 of the
Short-Duration Speaker Verification (SdSV) Challenge 2020
[1]. This challenge was split into two separate tracks: Task 1
and Task 2. Task 1 of the SdSV Challenge 2020 is the text-
dependent (TD) speaker verification and Task 2 is the text-
independent (TI) mode. Our team only participants the Task
1.

This paper is organized as follows: Section 2 describes the
setup of the datasets for the challenge. Section 3 introduces
the features and three types of DNN embedding-based speaker
verification systems. The performance of our systems on both
progress and evaluation subset is reported and analyzed in Sec-
tion 4.

2. Datasets
2.1. Training Data

2.1.1. Task 1 In-Domain Data

For the Task1, the in-domain training data is the Part 1 of Deep-
Mine dataset [2, 3], which contains more than 101,000 utter-
ances from 963 speakers.

Since Task 1 only consider the TC as target and the rest
will be considered as imposter, we no longer use the form of
a label given by a speaker. In other words, the same speaker
is distinguished by phrase labels, so the number of in-domain
data’s spkid increased from 963 to 8886.

2.1.2. Opening Dataset

Under the fixed condition of the challenge, we also used the fol-
lowing datasets in our submissions except the Task 1 in-domain
data.

Figure 1: SpecAugment: Multi-masking on acoustic feature

• VoxCeleb-1 [4] : a dataset which contains more than
100,000 utterances for 1,251 celebrities, which are ex-
tracted from videos uploaded to YouTube.

• VoxCeleb-2 [5] : a dataset which contains more than
1,000,000 utterances for 6112 celebrities, which are ex-
tracted from videos uploaded to YouTube.

2.2. Development Dataset

In our systems, we extract 63 speakers from the Task 1 in-
domain data to form the development set (Dev) since there is
no separate development data provided for the challenge. Be-
sides, the tags of the development set are treated like the Task
1 in-domain data mentioned above. As a result, the in-domain
training set (Train) has only 900 speakers which we used to
training models.

2.3. Augmentation Dataset

To obtain robust speaker embedding on SV systems we applied
two augmentation strategies.

2.3.1. Traditional Augmentation

We utilized Kaldi toolkit [6] to add noise to the data and the aug-
mentation datasets are Musan [7]1 and AIR2 for room impulse
response (RIR).

2.3.2. Spectrogram Augmentation

Inspired by the data augmentation from computer vision,
S.Daniel et al proposed SpecAugment (SpecAug) [8], an aug-
mentation method that operates on the log mel spectrogram of
the input audio, rather than the raw audio itself as shown in
Figure 1. Considering that the masking method adopted by
SpecAug is zero-setting, there is a problem of mean shift dur-

1http://www.openslr.org/resource/17
2http://www.openslr.org/resource/28

ing training and testing. Therefore, we have performed mean
correction on the frequency dimension.

3. Speaker Recognition System
ALL features are done by Kaldi toolkit and systems are trained
by Pytorch toolkits [9].

3.1. Feature Extraction

Three features including Mel-frequency cepstral coefficient
(MFCC), Filterbank features (Fbank) and Perceptual linear pre-
dictive features (PLP) are adopted in our systems. The settings
of feature extraction are:

• 23-dimensional Kaldi MFCC with Pitch - 16kHz,
frequency limits 40-7800Hz, 25ms frame length, 3-
dimensional pitch.

• 40-dimensional Kaldi Fbank - 16kHz, frequency limits
40-7800Hz, 25ms frame length.

• 20-dimensional Kaldi PLP with Pitch - 16kHz, fre-
quency limits 40-7800Hz, 25ms frame length, 3-
dimensional pitch.

All the features were applied cepstral mean-normalization
(CMN) with a sliding window of 3 seconds.

3.2. Speaker Model

3.2.1. TDNN Xvector

For the TDNN Xvector system, here are some details about
TDNN Xvetor training:

• Using three features MFCC, PLP and Fbank.

• Except for baseline, all other models use SpecAug dur-
ing model training. Besides, the frequency mask param-
eter and time mask parameter both are set to 0.2 and we
use random rows and columns which set to 2 and 2 re-
spectively.

• Using a warm restart technique for stochastic gradient
descent [10] to improve training performance. And the
TMax and Tmulti are set to 3 and 2 respectively.

3.2.2. ETDNN Xvector

Similar to the previous TDNN model, the ETDNN model also
uses three features MFCC, PLP and Fbank and the setup for
SpecAug and warm restart are the same with TDNN model.

3.2.3. Transfer Xvector

Lacking of a dataset which contains sufficient speakers and
phrase information has always been a problem in the field of TD
speaker verification. Therefore, we applied the transfer learning
strategy on our experiments. Specifically, the fine-tuning steps
are as follows:

1. Using the VoxCeleb 1 + 2 to train the TI deep speaker
model which based on TDNN architecture.

2. Using the parameters, obtained by the TI model, which
not included the output layer’s parameters, as TD
model’s initial parameters.

3. Using the Train dataset tp train a new model.

To get a robust transferred model, the TI model we used should
achieve a good performance on its source domain, which yields

Table 1: The results of the base x-vector in Dev set with different
PLDA parameters

PLDA Back-End Dev
xvector mfcc baseline EER% minDCF

submean+norm 0.53 0.0614
submean+lda256+norm 0.58 0.0793
submean+whiten+norm 0.51 0.0621

submean+lda256+whiten+norm 0.58 0.0789

2.16% EER in test of VoxCeleb 1. In addition, since transfer
model using the parameters obtained from TI model as initial
parameters, the new model converges quickly. Therefore, the
parameters of warm restart, Tmax and Tmulti are set to 3 and 1,
respectively, after our experimental comparisons.

To further makes the transfer learning match the task of tar-
get domain, we experiment with an attentive pooling mecha-
nism in transfer architecture. The strategy we adopt is similar
to that proposed in [11].

4. Experiment
4.1. Back-End Processing

We used the Kaldi toolkit to train the PLDA model and the
dataset is corresponding to the Train set. To get a better PLDA
model, we used the Train to train the PLDA with different
strategies such as submean, linear discriminant analysis (LDA)
which reduced the dimension to 256, whiten and so on. As we
can see from the Table 2, the x-vectors obtained from our base-
line model are used to compare these strategies. We found that
the PLDA model training with whiten, submean and normal-
ization achieve a better result, while the usage of LDA degrade
the performance. As a result, all of our submitted systems used
submean, whiten and normalization for PLDA training.

4.2. Result and Analysis

4.2.1. Single Systems

We start with TDNN-Xvector on Train which outperform of-
ficial baseline about 17% in minDCF for both progress subset
and evaluation subset. Based on this, we verified the effective-
ness of SpecAug. As we can see from the Table 3, the results
of system 1 and system 2 confirmed that applying SpecAug to
network training can further improve the performance, which
yields about 5% relative improvement on both subsets. As a
consequence, our subsequent systems all use this strategy dur-
ing training.

Comparing the results of system 2, 4, 6 and system 3, 5,
7, respectively, it can be clearly seen that ETDNN-Xvector per-
forms better TDNN-Xvector under the same training strategy.
Besides, with the same architecture, we can also see the effect
of three different acoustic features. The Fbank feature performs
better than MFCC and PLP, which means that lower-level fea-
ture remains more raw information which makes it more helpful
for DNN modeling.

Our best single system is the Transfer-Xvector-SpecAug-
Attentive, which achieves 0.1016 minDCF and 2.48% EER on
progress subset, and 0.1024 minDCF and 2.51% EER on eval-
uation subset. In Table 3, we also can draw the conclusion that
using attentive pooling rather than average pooling is effective
in transfer model. Attentive pooling yields 4.75% and 4.21%
relative improvement on progress subset and evaluation subset,

Table 2: The EER% and minDCF results of our single systems on the Task 1 of SdSV Challenge 2020 on the Progress subset and
Evalution subset

Feature Systems Progress subset Evaluation subset
minDCF EER% minDCF EER%

0 MFCC official i-vector/HMM baseline [12] 0.1472 3.47 0.1464 3.49
1 MFCC TDNN-Xvector 0.1210 3.05 0.1219 3.04
2 MFCC TDNN-Xvector-SpecAug 0.1149 2.90 0.1156 2.92
3 MFCC ETDNN-Xvector-SpecAug 0.1091 2.61 0.1089 2.64
4 PLP TDNN-Xvector-SpecAug 0.1171 2.98 0.1176 3.02
5 PLP ETDNN-Xvector-SpecAug 0.1078 2.66 0.1082 2.68
6 Fbank TDNN-Xvector-SpecAug 0.1066 2.71 0.1077 2.72
7 Fbank ETDNN-Xvector-SpecAug 0.1056 2.66 0.1059 2.67
8 MFCC Transfer-Xvector-SpecAug 0.1067 2.63 0.1069 2.63
9 MFCC Transfer-Xvector-SpecAug-Attentive 0.1016 2.48 0.1024 2.51

Table 3: Performance of the average fusion system on The
Progress subset and The Evaluation subset of Task 1 in SdSV
Challenge 2020

System Progress subset Evaluation subset
minDCF EER minDCF EER

fusion 2+4+6 0.0979 2.53 0.0979 2.55
fusion 3+5+7 0.0923 2.37 0.9353 2.39

fusion 2+3+4+9 0.0904 2.34 0.0907 2.36
fusion 3+5+7+9 0.0863 2.22 0.0873 2.25

fusion 2+3+4+5+6+7+9 0.0856 2.22 0.0862 2.24

respectively.

4.2.2. Fusion Systems

The fusion strategy is average weight and the performance of
the fused systems on the progress subset and evaluation set is
shown in Table 4. Comparing to the best single system Transfer-
Xvector-SpecAug-Attentive, all score fusion systems perform
better, which show that the fusion system is more robust and
stable. What’s more, we can see from Table 4 that models un-
der the same architecture are highly complementary on feature
level. Finally, our best fusion system consists of 7 subsystems,
which achieved 0.0856 and 0.0862 in minDCF for two subsets,
respectively, which yields 15.7% and 15.8% relative improve-
ments in term of minDCF for progress subset and evaluation
subset over the best single system.

5. Conclusion
This paper presents the system submitted by T20 in the TD task
of SdSV challenge 2020.

6. References
[1] H. Zeinali, K. A. Lee, J. Alam, and L. Burget, “Short-duration

speaker verification (sdsv) challenge 2020: the challenge evalua-
tion plan,” arXiv preprint arXiv:1912.06311, 2019.

[2] H. Zeinali, H. Sameti, and T. Stafylakis, “Deepmine speech pro-
cessing database: Text-dependent and independent speaker verifi-
cation and speech recognition in persian and english.” in Odyssey,
2018, pp. 386–392.

[3] H. Zeinali, L. Burget, J. Černockỳ et al., “A multi purpose and
large scale speech corpus in persian and english for speaker
and speech recognition: the deepmine database,” arXiv preprint
arXiv:1912.03627, 2019.

[4] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” arXiv preprint
arXiv:1706.08612, 2017.

[5] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[7] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[8] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” 2017.

[10] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[11] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics
pooling for deep speaker embedding,” in INTERSPEECH, 2018.

[12] H. Zeinali, H. Sameti, and L. Burget, “Hmm-based phrase-
independent i-vector extractor for text-dependent speaker verifica-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. PP, pp. 1–1, 04 2017.

