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Abstract

In this paper, we describe the system Team NSYSU+CHT has
implemented for the 2020 Short-duration Speaker Verification
Challenge (SASV 2020). Our single systems are embedding-
based speaker verification, with front-end speaker embedding
extractors and back-end PLDA verification scorers. The main
difference between our system and other well-known systems
is that we propose a new architecture, which we call multi-
length context neural network (MLCNN)), for speaker embed-
ding extraction. Essentially, MLCNN combines the bottleneck
time-delay neural network (TDNN) blocks and 2D convolution
blocks. The motivation is to combine the advantages of both. In
our evaluation, MLCNN has outperformed several well-known
neural networks. Our best single system achieves an equal er-
ror rate (EER) of 4.47% and a minimum detection cost function
(minC) of 0.188 on the text-independent track. In addition, our
fusion system achieves an EER of 4.21% and 0.1514 of minC
on the text-dependent track.

Index Terms: short-duration speaker verification, x-vector,
time delay neural network

1. Introduction

In this paper, we present the speaker verification systems devel-
oped by the National Sun Yat-sen University and Chunghwa
Telecom Laboratories (NSYSU+CHT) team for the Short-
duration Speaker Verification (SdSV) challenge 2020 [1]. Our
main contribution is to propose and analyze several model ar-
chitectures with similar costs but better results than conven-
tional methods. The challenge provides benchmarks for text-
dependent speaker verification and text-independent speaker
verification. It also covers two features. The first feature is that
the speaker verification in the challenge focuses on the short
duration scenario. The second feature is that there may be dif-
ferent languages between enrollment and test utterances. There-
fore, participants need to develop a sufficiently robust system to
mitigate the before-mentioned effects.

In recent years, speaker verification systems in many sce-
narios have adopted embedding-based methods [2, 3, 4] to re-
place i-vector [5, 6] and become mainstream. The embedding-
based method relies on neural networks and a sufficient amount
of training data. The embedding neural network architec-
ture can be divided into frame-level layers, pooling, and seg-
ment layers. Recently, TDNN-based architecture such as E-
TDNN [7] and F-TDNN [8], or well-known ResNet34 and
ResNet50 [9] architectures are widely used to extract frame-
level information. Many pooling methods [10, 11, 12] and an-
gular based loss functions [13, 14, 15, 16, 17] also help the sys-
tems increase performance.. This paper proposes several model
architectures. These architectures include residual TDNN us-
ing bottleneck TDNN block and residual connection to achieve

better accuracy when the number of parameters is close to
conventional methods. Furthermore, the multi-length context
neural network (MLCNN) we proposed combines the bottle-
neck TDNN block and the 2D convolution blocks in a novel
way, thereby exerting their respective strengths. Our best sin-
gle system achieves an equal error rate (EER) of 4.47% and
a minimum detection cost function (minC) of 0.188 for text-
independent tasks, and the fusion system also achieved 4.21%
EER and 0.1514 minC for text-dependent tasks.

2. Experimental Settings
2.1. Train and Development data

We use VoxCelebl, VoxCeleb2 [18, 19, 20], Librispeech [21],
and subpart of the DeepMine dataset [22, 23] to develop our
systems. The VoxCeleb (VoxCelebl and VoxCeleb2) dataset
has 7146 speakers and 1.2 million speech segments, and the
Libripeech dataset has 2338 speakers and more than 200,000
speech segments. The in-domain DeepMine dataset is subdi-
vided into task 1 training partition and task 2 training partition,
which are used for text-depend and text-independent tasks, re-
spectively. Due to the large time cost of training speaker embed-
ding neural networks, we only use VoxCeleb and Librispeech
to train speaker embedding neural networks. Since under this
setting, two tasks can be performed with the same speaker em-
bedding neural networks. We randomly selected the data from
two training partitions in the DeepMine dataset as private trails
for the two tasks. The number of speakers in the two private
trails is the tail of the number of speakers in the original train-
ing partition data. In other words, 63 of the 963 speakers in
the text-dependent task and 88 of the 588 speakers in the text-
independent task. The remaining data of the two DeepMine
training partitions that are not private trails are used for the
training of the back-end PLDA and phrase model.

2.2. Evaluation data

The evaluation data for this challenge is a subpart of the Deep-
Mine dataset. Under the text-dependent task, there are a total
of 8 million trials. The enrollment consists of three utterances
of the same phrase, and there are ten types of phrases. When
the enrollment and test of the trials are the same speaker and
phrase, they are considered as a target. In the text-independent
task, there has a total of 13 million trials. The speech duration
of enrollment of the trials is between 3 and 120 seconds, and
the language is Persian. Besides, the duration of the test voice
is 1 to 8 seconds and the language may not only be Persian but
also English.
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2.3. Data Preprocessing

Data augmentation enhances the performance of embedding-
based speaker verification systems by increasing the amount
and diversity of data [4, 24]. Our system uses the data aug-
mentation strategy in the Kaldi recipe, which adds noise and
reverberation to the raw speech. Specifically, we randomly se-
lect speech, music, noises from the MUSAN dataset [25] to add
noise to the speech data. Furthermore, the speech data is also
artificially reverberated via convolution with simulated RIRs.
We use 40-dimensional FBank which is mean normalized
over a sliding window of up to 3 seconds as the acoustic feature
to train the neural networks. The Fbank extracted from 16kHz
audio signal with 25 ms frame-length, 10 ms frameshift, and
bandwidth is limited to the range of 20-7600 Hz. After acoustic
feature extraction, we generate a training archive based on the
Kaldi-Tensorflow toolkit [26, 27]. The minimum and the maxi-
mum number of frames in each training example is fixed at 200.
Additionally, the number of repeats for each speaker is 15.

2.4. Backend Scoring and Phrase modeling

For all our systems, we trained Gaussian PLDA [28] as a back-
end scoring module. Before training PLDA, LDA will project
the dimension of speaker embedding from 512 to 250 and main-
tain discrimination among speakers. The dimensions of the pro-
jection are tuned according to our private trials.

In addition to learning whether each trial is the same
speaker, the text-dependent task also needs to determine
whether it is the same phrase. Therefore, we have addition-
ally developed a phrase scoring module. Since there are only
10 kinds of phrases, we regard training the phrase model as a
classification task.The architecture of the phrase model is a con-
ventional TDNN but halves each layer, and the training data is
the same as the PLDA training data of text-dependent tasks.The
pre-processing of the data is roughly the same as the speaker
embedding neural network training, except that each training
example crop or padding the utterances to 1000 frames. Due
to the benefits of the lightweight model architecture, the phrase
model takes only 4 hours to train on the GTX 1080 Ti to con-
verge, which is much faster than the speaker embedding neural
network. During the inference stage, the purpose of the phrase
scoring module is to help the original speaker verification sys-
tem to distinguish wrong trials, especially target-wrong trials.
Therefore, when the phrase model predicts that the enrollment
and test utterance are the same phrases, we do not change the
prediction result of the original system. In contrast, when the
prediction is different, we generate the phrase score accord-
ing to the classification probability of the output of the phrase
model. The concept of generating scores is that when predict-
ing different classes, the higher the probability of the class, the
more confident the model is that the phrase of utterances is dif-
ferent. Consequently, the penalty is larger.

3. Speaker Embedding Networks
3.1. Training setup

All of our speaker embedding neural networks train 6 epochs
on the training archive mentioned in Section 2.3 and the mini-
batch size is 32. The E-TDNN baseline system uses Softmax
Cross-entropy as the loss function, and the remaining settings
are the default values of the Kaldi-Tensorflow toolkit [26]. Our
other neural network models use the following training settings.
We use Additive Margin Softmax [13] with margin and scal-
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Figure 1: A bottleneck TDNN block. C represents the number of
contexts in the layer. Layers with 3 contexts can have different
dilation rates.

Table 1: The frame-level layers architecture of the proposed 15-
layers residual TDNN. C' represents the number of contexts in
the layer. K represents the dimension of acoustic features.

# Layer type I/0 bottleneck  dilation
1  TDNN (C=5) K /512 - 1
2 TDNNblock 512 /512 256 2
3 TDNNblock 512 /512 256 3
4 TDNNblock 512 /512 256 4
5 TDNNblock 512 /512 256 5
6 TDNN(C=1) 512 /1536 - 1

ing factor of 0.2 and 50 as the loss function. The learning rate
scheduling method is separated into the warm-up stage and de-
cay stage [29]. When the training progress is less than 10%, we
increase the learning rate linearly, and then the learning rate de-
creases exponentially until the end of the training. This kind of
scheduling of decreasing the learning rate after going through
the warm-up stage is quite important in the training process of
some model architectures. The initial learning rate and final
learning rate in our experiment are 0.001 and 0.0001, respec-
tively.

In addition, each layer of our network uses batch normal-
ization after the nonlinear unit. When training the network, we
also employ Label Smoothing [30, 31] that the parameter for
the degree of smoothing « is set to 0.5.

3.2. Network Architectures

The model architecture of the E-TDNN baseline system is the
conventional E-TDNN architecture with 12 hidden layers. The
first 10 layers learn to extract frame-level information, and then
the 1536-dimensional statistical pooling calculates the mean
and standard deviation between each output frame of frame-
level layers. Finally, the speaker representation of the input
speech segment is learned by the 2-layer 512-dimensional fully
connected. The other systems not only differ from the train-
ing setup with the E-TDNN baseline system, the segment-level
has only one layer of 512-dimensional fully connected, which
is also the layer to extract embedding during inference. Be-
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Table 2: The frame-level layers architecture of the proposed 27-
layers residual TDNN.

# Layer type 1/0 bottleneck  dilation
1 TDNN (C=5) K /512 - 1
2  TDNNblock 256 /256 128 1
3  TDNNblock 256 /256 128 1
4  TDNNblock 256 /256 128 1
5 TDNNblock 512 /512 256 2
6 TDNNblock 512 /512 256 3
7  TDNNblock 512 /512 256 4
8 TDNNblock 512 /512 256 5
9 TDNNblock 512 /512 256 6
10 TDNN(C=1) 512 /1536 - 1

Table 3: The architecture of proposed MLCNN. The dilation
rates of 4 TDNN blocks are 2, 3, 4, and 5, respectively.

# Layer type Structure Output shape Total context  Input layer

0 - - 43 x 200 x 1 1 -

1 Conv2D 3 x 3,64 43 x 200 x 64 3 0

2 Conv2D blocks [3 x 3'64} x4 43 x 200 x 64 19 1

3% 3,64

3 Reshape - 200 x 2752 19 2

4 Pooling - 5504 full seq. 3

5 FC 5504 x 256 256 full seq. 4

6 TDNN 1,512 200 x 512 19 3
1,256

7 TDNN blocks 3,256| x4 200 x 512 47 6
1,512

8 TDNN 1,1536 200 x 1536 47 7

9 Pooling - 3072 full seq. 8

10 FC 3072 x 256 256 full seq. 9

11 Aggregate 2 x 256 x 256 512 full seq. 5,10

12 FC 512 X #spks #spks full seq. 11

sides, other systems use 4 heads attentive pooling to integrate
the frame-level information instead of statistics pooling. The
details of self-attentive pooling are described in Section 3.2.1.

3.2.1. NSYSU E-TDNN

This model is based on the E-TDNN baseline and is modified
according to Section 3.1 and Section 3.2. One of the changes to
the model architecture is the pooling layer. The attention weight
of 4 heads self-attentive pooling we use is shown in Equation 1.

weight = softmax(tanh(H™ W1 + b)Ws) (1)

where H is the output of the frame-level layer, and tanh(-)
is the hyperbolic tangent function. In our models, the shapes of
the two trainable matrices W7 and W5 are 1536 x 512 and
512 x 4, respectively. In addition, during the training stage.
This attention weight will be used to calculate the weighted av-
erage and standard deviation after using dropout which keep
probability is 0.9.

3.2.2. Residual TDNN

The residual learning framework reduces the difficulty of deeper
neural network training because of shortcut connections. Fur-
thermore, because of the use of bottleneck design, it increases
the depth and accuracy of the network while keeping time com-
plexity. We follow these design rules and build residual TDNN
models of 15 layers and 27 layers, and their parameter amounts
are close to conventional TDNN and E-TDNN, respectively.
These network architectures are composed of bottleneck TDNN
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blocks shown in Figure 1. The block contains TDNN layers
with contexts 1, 3, and 1, where the first and last layers are re-
sponsible for reducing and then increasing dimensions. This
allows the middle layer with 3 contexts to have fewer param-
eters. The reduced input and output dimensions are shown in
dotted lines in Figure 1.

The 15 layers residual TDNN is abbreviated as
ResTDNN15. Its frame-level architecture is shown in
Table 1, and the total context is 33 larger than 23 of E-TDNN.
In addition, a block consists of three layers, so the frame-level
has a total of 14 layers of the network. But the amount of
parameters is only close to the conventional 5-layer TDNN
frame-level architecture. The 27 layers residual TDNN is
abbreviated as ResTDNN27. Its frame-level architecture is
shown in Table 2. The idea of designing the network is to
collect information in short contexts using blocks with smaller
parameters. Then expand the receptive contexts with other
blocks.

3.2.3. Multi-length Context Neural Network

In recent years, in addition to the TDNN-based model archi-
tecture widely used for speaker recognition, the well-known
ResNet34, ResNet50, etc. [9] are also favorite architectures
of the research community. We find that some TDNN-based
network architectures perform better in scenarios with longer
speech [32], while some in shorter speech scenarios [33] per-
form better with ResNet based on 2D convolutional networks.
Our proposed multi-length context neural network is abbrevi-
ated as MLCNN, which combines the advantages of the two ar-
chitectures. Use a 2D convolutional network structure to learn
representations with shorter total context lengths, and stack the
TDNN-based structure to enable the network to learn represen-
tations with longer total context lengths. After that, we multiply
the two representations by a trainable weight and combine the
results. The overall network architecture is shown in Table 3.

3.2.4. Residual TDNN and GRU

The RNN structure can bring certain benefits to the speaker
recognition model [34]. In addition, we also believe that using
a RNN structure to integrate long-term information of speech
can reduce the impact of zero paddings in convolutional-based
architecture, especially in the case of a very short speech. We
modify ResTDNN27. Reduce the dilation rate of the seventh
and eighth layers in Table 2 to 1, and replace the block of the
ninth layer with the bidirectional GRU. The receptive contexts
of the convolutional network under this network is only 20. We
abbreviate this model as ResTDNN27-GRU.

The output of the eighth layer network will simultaneously
be input into both forward sequence GRU layer and backward
sequence GRU layer. The dimension of a GRU layer is 256, and
the nonlinear unit is a hyperbolic tangent function. Therefore,
the forward-backward GRU pair is 512-dimensional.

3.2.5. Trainable Margin AM-Softmax

We also try to get rid of the situation of adjusting hyperparame-
ters, so that the margin in AM-Softmax can be obtained by train-
ing. We add an additional restriction to the margin, as shown in
equation 2.

margin = softplus (tanh (m) — 0.5) )

Where m is a trainable variable. We use this restriction to
prevent the margin from saturating near O or 1, which makes
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Table 4: Results of our systems on SdSV challenge 2020 private/progress/evaluation set. Note that the results of two tasks are different
PLDA models. In addition, the text-dependent results of each system in the table use the same phrase scoring module.

Text-dependent

Text-independent

Systems

Private Progress Evaluation Private Progress Evaluation
EER minC EER minC EER minC EER minC EER minC EER minC
Clallenge baseline - - 9.05 0529 9.05 0.528 - - 10.67 0431 10.67 0432
E-TDNN baseline  5.12 0.227 5.19 0.192 524 0.192 575 0.252 799 0347 803 0.348
NSYSUE-TDNN 497 0.213 484 0.191 490 0.191 494 0.221 583 0242 583 0.242
ResTDNN15 447 0.184 457 0.165 469 0.165 464 0203 584 0230 563 0.231
ResTDNN27 447 0.182 4.60 0.165 4.68 0.165 464 0203 565 0231 564 0.231
ResTDNN27-GRU 425 0.172 4.48 0.163 458 0.164 471 0203 7.07 0.294 7.07 0.293
ResTDNN27-TM 471 0.197 455 0.175 463 0.176 481 0.281 584 0237 584 0.238
MLCNN 472 0203 452 0171 455 0171 441 0.192 447 0.188 447 0.188

Average fusion 392 0.158 4.1 0.150 421 0.151

Table 5: Computation cost of each model at inference stage.

Network #Parameters  Inference time (ms)

E-TDNN baseline 9.4 M 4.05
NSYSU E-TDNN 9.9 M 4.35
ResTDNN15 8.1 M 5.10
ResTDNN27 9.8M 5.45
ResTDNN27-GRU 9.6 M 54.3
ResTDNN27-TM 9.8 M 7.60

MLCNN 11.6 M 7.79

the margin at least about 0.2 and the maximum value at 0.97.
We apply this try to the ResTDNN27 model, so it is called
ResTDNN27-TM for short.

4. Results and Analysis

The results of our system in the SASV challenge 2020 are shown
in Table 4. In the table, the minimum detection cost function
(minC) and the percentage value of equal error rate (EER) are
used as metrics to evaluate each system. The details of how
private set divides data are described in Section 2.1. Note that
the results of the text-dependent and text-independent tasks are
different PLDA models. In addition, the text-dependent results
of each system in the table use the same phrase scoring module
as described in Section 2.4.

4.1. Text-dependent Speaker Verification

Under the text-dependent task, before fusion the results of dif-
ferent speaker embedding networks, ResTDNN-GRU has the
best results on minC. On the contrary, this model architecture
has poor results in the evaluation set on the text-independent
task. We believe that this difference is the impact of zero
paddings in convolutional-based architecture. The shorter the
speech duration, the greater the impact (text-dependent speech
duration is about 3 seconds, and text-independent is longer).
In addition, we average fusion ResTDNNI15 with 3 types of
ResTDNN27 systems to be our best fusion system. This fu-
sion system reached an EER of 4.21% and minC of 0.151 on
the evaluation set, and we also submitted it as a primary sys-
tem. Due to the challenge rules, our single system cannot
use the phrase scoring module. Therefore, we consider the

ResTDNN15 system of the text-dependent task without phrase
scoring module as a single system, which has an EER greater
than 10% and a minC of 0.87 on the progress set.

4.2. Text-independent Speaker Verification

Comparing the E-TDNN baseline and NSYSU E-TDNN can
show the effect of different training settings of neural networks.
In addition, our proposed ResTDNN27 and ResTDNN15 can
have better performance when the amount of parameters is close
to or less than that of the E-TDNN architecture. In our train-
ing settings, GRU did not play a good role in text-independent
tasks, but it required a lot of computing resources. Compar-
ing ResTDNN27 and ResTDNN27-TM shows that the effect of
TM is not better than simply setting the margin to 0.2. Although
we hope to find the maximum possible margin by training, we
think this will make optimization more difficult. The MLCNN
architecture we proposed outperforms other models. It achieves
an EER of 4.47% and a minC of 0.188 on the evaluation set.
We also submitted this system as a primary system and also our
single system.

4.3. Inference Computational Resources

Since each part of our system has similar operations except the
neural network, we focus on considering the differences be-
tween each neural network. Table 5 shows the number of pa-
rameters and computation time for each neural network, where
the computation time is measured on the GTX 1080 Ti. The
computation time indicates the average time for an utterance of
about 3 seconds to extract the embedding on the neural network.
It can be seen from the results that the use of the RNN structure
will greatly increase the computation time.

5. Conclusions

This paper describes the speaker verification systems we devel-
oped for SASVC 2020. Our proposed multi-length context neu-
ral network (MLCNN) combines the bottleneck TDNN block
with 2D convolution blocks in a novel way and achieves good
results on text-independent tasks. The network constructed us-
ing the bottleneck TDNN block also shows that the accuracy of
the system has improved. In addition, we simply transfer text-
independent tasks to text-dependent tasks through an additional
phrase modeling module. Moreover, the analysis of each model
architecture is also included.
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