
Short-duration Speaker Verification Challenge 2020 Technical Report

The NetEase Games System Description for Text-dependent Sub-challenge of
SDSVC 2020

Zhuxin Chen, Duisheng Chen, Hanyu Ding, Yue Lin

NetEase Games AI Lab
{chenzhuxin,gzchenduisheng,gzdinghanyu,gzlinyue}@corp.netease.com

Abstract
This document briefly describes the systems submitted to the
text-dependent sub-challenge of SDSVC 2020 by NetEase
Games AI Lab. The submitted primary system is a fusion of
five x-vector systems and an ASR system. We improve the
x-vector and PLDA pipeline for text-dependent speaker veri-
fication by changing the layer used to produce embeddings and
modifying the back-end training strategies. ASR system is used
for rejecting wrong trials. Finally, our primary system achieves
minDCF=0.0456 and EER=1.52% on the evaluation set.
Index Terms: speech verification, x-vector, PLDA, SDSVC
2020, short utterance

1. SRE Systems
1.1. Data preparation

The training data that we used consisted of Voxceleb1, Vox-
celeb2 and the training partition of DeepMine dataset. Since
there was no separate development data provided for this chal-
lenge, we splited the DeepMine training set into two parts, with
863 speakers (89,801 utterances) as training set and 100 speak-
ers (11,262 utterances) as development set for tuning parame-
ters.

1.2. Acoustic Features

Two kinds of features, namely MFCC and Fbank, were used in
our experiments. We extracted 30-dimensional MFCC and 40-
dimensional Fbank with a frame-length of 25ms. Cepstral mean
subtraction was applied over a 3-second sliding window. An
energy-based VAD is employed to filter out non-speech frames.

1.3. Neural network architecture

As mentioned in the abstract, our primary system contained five
x-vectors. The following features and neural networks were
used in our systems.

• Fbank-FTDNN: This system consists of the architecture
of SpecAugment and FTDNN, as depicted in Table 3.

• Fbank-FTDNN-OPGRU: This system differs from the
Fbank-FTDNN system that it adds two OPGRU layers
with a delay of 3 frames.

• Fbank-FTDNN-LSTM: This system differs from the
Fbank-FTDNN system that it adds two LSTM layers
with a delay of 3 frames.

• Fbank-CNN-FTDNN: This system consists of the ar-
chitecture of SpecAugment, CNN and FTDNN, as de-
picted in Table 4.

• MFCC-CNN-FTDNN: This system consists of the ar-
chitecture of SpecAugment, CNN and FTDNN, as de-
picted in Table 5.

We used Kaldi [1] to train these systems, with a mini-batch
size of 128, an initial learning rate of 0.001 and a final learning
rate of 0.0001 for 6 epochs. Parallel training of the DNNs were
up from 8 to 24 GPUs.

For the training data, we combined Voxceleb1, Voxceleb2
and the training subset of DeepMine dataset, totally about 8226
speakers. The data augmentation techniques described in [2]
were applied.

1.4. Embedding extraction

Unlike the typical settings in text-independent speaker verifi-
cation, we extracted embeddings with the following modifica-
tions:

• We used the standard deviation statistics in the pooling
layer as embeddings for all systems.

• A data expansion strategy was used for the DeepMine
dataset. We copied the feature three times after VAD
and concatenated them together as most of the utterances
were short-duration.

1.5. Back-end training strategy

We first trained the back-end models using text-dependent
dataset. After extracting the embedding as mentioned above,
a simple yet effective operation is to modify the training la-
bels of LDA and PLDA models. While the text-independent
speaker verification(TI-SV) system only uses the speaker tag,
the text-dependent speaker verification(TD-SV) system com-
bines speaker and phrase tag into a unique tag.

In our experiment, we used the training subset of DeepMine
dataset, totally about 863 speaker with a fixed set of ten different
phrases, to train the back-end models. There were 8630 classes
of the back-end training data after modification. Similar to [3],
the embeddings were centered, dimensionality reduced using
LDA and length normalized. We adjusted the output dimension
of LDA based on the results of the development set.

1.6. PLDA Adaptation

It is well known that the performance of speaker verification
system benefits from large-scale in-domain data. However, it
would be prohibitively expensive to collect large amount of in-
domain data for every application, especially for TD-SV task.
In this challenge, a PLDA adaptation method was applied that
utilized both of Voxceleb dataset, which is a TI-SV labeled
dataset, and DeepMine training set, which is a TD-SV labeled
dataset.

As shown in Figure 1, the vital components of our back-
end model include CORAL transform and PLDA interpolation.
During training, the embeddings extracted from the TI-SV and
TD-SV training set were centered respectively and two LDA
models were trained. While the model with TI-SV data only



Short-duration Speaker Verification Challenge 2020 Technical Report

made use of the speaker label, the other one with TD-SV data
utilized both of the speaker and phrase label using the strategy
described in section 1.5. The CORAL was used to minimize
the covariance distance between the TI-SV and TD-SV data by
whitening and re-coloring. We used the CORAL transformed
vectors to train the PLDA. Finally, the adaptive PLDA was
achieved by linearly interpolating the TI-SV covariance with
the TD-SV covariance. For the CORAL transformation, it can
be described as following equations:

Cti = cov(Dti) + eye(size(Dti, 2)) (1)
Ctd = cov(Dtd) + eye(size(Dtd, 2)) (2)

D′ti = Dti ∗ C−1/2
ti ∗ C1/2

td (3)

Where Dti and Dtd are the length normalized (LN) vectors
after LDA projection. D′ti is the CORAL transformed vector
of TI-SV dataset.

During test, the embeddings were centered and dimension-
ality reduced using the model trained from TD-SV data.

Figure 1: Flow Diagram of PLDA Adaptation

2. ASR System
2.1. Data preparation

The same as in section 1.1, we splited the DeepMine training set
into two parts and only used the training subset to build the ASR
system, which was used for predicting the phoneme sequence.

2.2. Acoustic modeling

The acoustic model was trained using lattice-free maximum
mutual information (LF-MMI) criterion with Kaldi tool. We
followed the Kaldi’s librispeech recipe 1 to build this system but
without using i-vector. The feature was 40-dimensional MFCC
and there were 16 TDNNF layers in the acoustic model.

2.3. Decoding

In decoding phase, a phone based language model was built
according to the transcription of ten phrases. We used Phone
Error Rate(PER) as the score of ASR system.

3. Results
Tabel 1 shows the performance of x-vector based single systems
on the evaluation set. As can be seen, our best x-vector system
achieves MinDCF=0.0584 on the evaluation set.

Tabel 2 shows the performance of our submitted systems.
For the single system, we combined the Fbank-CNN-FTDNN
PLDA score and the ASR PER score. Here ASR system was

1https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/tuning/run tdnn 1d.sh

used for rejecting wrong trials. In our experiment, if the PER
was more than 45%, we would degrade the score. For the pri-
mary system, we made a fusion with five x-vector based systems
as shown in Tabel 1, and then we combined the SRE and ASR
scores. Finally, our primary system achieved minDCF=0.0456
and EER=1.52% on the evaluation set.

Table 1: The result of x-vector based systems on the evaluation
set.

System EER(%) MinDCF
Fbank-FTDNN 1.89 0.0678

Fbank-FTDNN-OPGRU 1.77 0.0608
Fbank-FTDNN-LSTM 1.75 0.0584
Fbank-CNN-FTDNN 1.67 0.0626
MFCC-CNN-FTDNN 1.78 0.0642

Table 2: The result of submitted systems on the evaluation set.

System EER(%) MinDCF
single system 1.64 0.0546

primary system 1.52 0.0456

4. References
[1] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,

N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. CONF.
IEEE Signal Processing Society, 2011.

[2] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in ICASSP, 2018, pp. 5329–5333.

[3] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep
neural network embeddings for text-independent speaker verifica-
tion.” in Interspeech, 2017, pp. 999–1003.



Short-duration Speaker Verification Challenge 2020 Technical Report

Table 3: The structure of Fbank-FTDNN, Fbank-FTDNN-LSTM and Fbank-FTDNN-OPGRU systems

Layer Layer Type Context
Factor 1

Context
Factor 2

Skip Conn.
from Layer Size Inner

Size
1 BN-SpecAug t 40
2 TDNN-ReLU-BN t-2:t+2 512
3 FTDNN-ReLU-BN t-2,t t,t+2 1024 256
4 FTDNN-ReLU-BN t t 1024 256
5 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
6 FTDNN-ReLU-BN t t 3 1024 256
7 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
8 FTDNN-ReLU-BN t t 2,4 1024 256
9 FTDNN-ReLU-BN t-3,t t,t+3 1024 256

10 FTDNN-ReLU-BN t t 4,6,8 1024 256
11 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
12 FTDNN-ReLU-BN t t 6,8,10 1024 256
13 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
14 FTDNN-ReLU-BN t t 8,10,12 1024 256
15 None/LSTM*2/OPGRU*2 t 1024
16 Dense-ReLU-BN t 2000
17 Pooling(mean+stddev) Full-seq 2*2000
18 Dense-ReLU-BN 512
19 Dense-ReLU-BN 512
20 Dense-Softmax Num.spks.

Table 4: The structure of Fbank-CNN-FTDNN system.

Layer Layer Type Kernel Filters Context
Factor 1

Context
Factor 2

Skip Conn.
from Layer Size Inner Size

1 BN-SpecAug t 40
2 CNN-ReLU-BN 7*3 64 64*40
3 Res-Block 3*3 64 64*40
4 Res-Block 3*3 64 64*40
5 CNN-ReLU-BN 3*3 128 128*20
6 Res-Block 3*3 128 128*20
7 Res-Block 3*3 128 128*20
8 CNN-ReLU-BN 3*3 256 256*10
9 Res-Block 3*3 256 256*10

10 Res-Block 3*3 256 256*10
11 FTDNN-ReLU-BN t-1,t t,t+1 512
12 FTDNN-ReLU-BN t-2,t t,t+2 1024 256
13 FTDNN-ReLU-BN t t 1024 256
14 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
15 FTDNN-ReLU-BN t t 13 1024 256
16 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
17 FTDNN-ReLU-BN t-3,t t,t+3 12,14 1024 256
18 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
19 FTDNN-ReLU-BN t-3,t t,t+3 14,16,18 1024 256
20 Dense-ReLU-BN t 1536
21 Pooling(mean+stddev) Full-seq 2*1536
22 Dense-ReLU-BN 512
23 Dense-ReLU-BN 512
24 Dense-Softmax Num.spks.



Short-duration Speaker Verification Challenge 2020 Technical Report

Table 5: The structure of MFCC-CNN-FTDNN system.

Layer Layer Type Kernel Filters Context
Factor 1

Context
Factor 2

Skip Conn.
from Layer Size Inner Size

1 BN-SpecAug t 30
2 CNN-ReLU-BN 7*3 64 64*30
3 Res-Block 3*3 64 64*30
4 Res-Block 3*3 64 64*30
5 CNN-ReLU-BN 3*3 128 128*15
6 Res-Block 3*3 128 128*15
7 Res-Block 3*3 128 128*15
8 FTDNN-ReLU-BN t-1,t t,t+1 512
9 FTDNN-ReLU-BN t-2,t t,t+2 1024 256

10 FTDNN-ReLU-BN t t 1024 256
11 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
12 FTDNN-ReLU-BN t t 10 1024 256
13 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
14 FTDNN-ReLU-BN t-3,t t,t+3 9,11 1024 256
15 FTDNN-ReLU-BN t-3,t t,t+3 1024 256
16 FTDNN-ReLU-BN t-3,t t,t+3 11,13,15 1024 256
17 Dense-ReLU-BN t 1536
18 Pooling(mean+stddev) Full-seq 2*1536
19 Dense-ReLU-BN 512
20 Dense-ReLU-BN 512
21 Dense-Softmax Num.spks.


