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Abstract

This document describes the systems submitted by the Johns
Hopkins University team to the Short duration speaker verifica-
tion challenge 2020. All our systems were based on different
flavours of x-vectors. x-Vectors networks were pre-trained on
VoxCeleb2. Then, they were fine-tuned on the training sets of
the corresponding task. A few speakers from the training sets
where held out to create dev. trials and measure EER/DCF. For
fine-tuning and PLDA in text-dependent task1, we considered
the pair speaker-phrase, a class. For text independent task2,
the classes were just speakers. x-Vector fine-tuning signifi-
cantly improved the results. The best systems were ResNet34
x-vectors with squeeze-excitation blocks.
Index Terms: speaker verification, x-vectors, adversarial

1. Introduction
This document describes the systems submitted by the Johns
Hopkins University team (team 10) to the Short duration
speaker verification challenge 2020 [1]. All our systems were
based on different flavours of x-vectors [2]. We used x-vectors
based on extended TDNN [3] and ResNet34 [4, 3, 5]. x-Vectors
networks were pre-trained on VoxCeleb2. Then, they were fine-
tuned on the training sets of the corresponding task. A few
speakers from the training sets where held out to create dev.
trials and measure EER/DCF. For fine-tuning and PLDA in text-
dependent task1, we considered the pair speaker-phrase, a class.
For text independent task2, the classes were just speakers.

2. x-Vectors
We used different x-vector versions with different encoders. All
versions used mean+stddev pooling, 256 dim. embedding and
additive angular softmax objective with s = 30 and m = 0.3.

2.1. Residual Extended TDNN

Residual Extended TDNN (ResETDNN) used the E-TDNN ar-
chitecture similar to the ones in [6, 3, 5]. We network encoder
consists of 5 E-TDNN blocks with dimension 512. Each block
consists of one TDNN layer (1D dilated conv.) followed by a
frame-wise full connected layer. In blocks 2 to 5, we added
residual connections similar to ResNet [7].

2.2. ResNet34

The ResNet34 followed the configuration similar to [4]. We had
a two ResNet34 with 64 to 512 channels in residual blocks as
in [5], one was trained with augmentation (ResNet34) and the
other without augmentation (ResNet34-no-aug). Also a Thin-
ResNet34 with 16 to 128 channels trained with augmentation.

2.3. SE-ResNet34

Here, we added squeeze-excitation blocks (SE-block) [8] to the
residual blocks. We have a SE-ResNet34 trained with augmen-
tation. We used a reduction factor of 8 in the bottleneck layer
of the SE-block.

2.4. T-SE-ResNet34

Here, we modified the SE-block to compute the SE embedding
by averaging just in the time dimension (Standard SE averages
in time and freq. dimensions). Thus we obtain an embedding
of size C × F (C is number of channels of the layer, and F
is the freq dimension of the layer)–instead of dimension C in
Standard SE . Since, this embedding is much larger than in the
standard case, we used 16 as reduction factor.

2.5. Training details

The acoustic features employed were 80 dimension log-Mel
filter-banks with short-time mean normalization. We pre-
trained all the networks in VoxCeleb2 dev+test [9]. augmented
6×with noise from the MUSAN corpus1 and impulse responses
from the AIR dataset2. Margin we set to m = 0 in the first
epoch and linearly increased to m = 0.3 in epoch 20. The net-
work was trained on 4 sec. chunks. In each epoch, we used
as many chunks as training utterances, and we trained for 70
epochs. We used Adam optimizer with learning rate 0.01 with
exponential decay learning rate scheduling.

2.6. Fine-tuning details

The networks were fine-tuned on the training sets of task1 or
task2. The fine-tuning data was augmented in the same manner
as the training data. First we fine-tuned the last affine layer be-
fore embedding extractor and the output layer for a few epochs,
while keeping the rest of the network frozen. We denote this
by ft-affine. Then, we continued fine-tuning the full network.
We denote this by ft-full. For task1, the fine-tuning classes were
speaker+phrase, so we had 10×num-spks classes. For task2,
the classes were just speakers. For fine-tuning, we randomly
sampled chunks between 1 to 6 seconds to match the eval. dura-
tions. We used SGD optimizer with exponential decay learning
rate scheduling.

3. Back-ends
3.1. Task 1

We used LDA to 200, centering, whitening, length normaliza-
tion and simplified PLDA with 150 dim. speaker factors. It was
trained only on our task1 adaptation set (without augmentation),

1
http://www.openslr.org/resources/17

2
http://www.openslr.org/resources/28
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Table 1: Results on Task1

Dev. Prog. Eval.

Non-Targets All same-spk+diff-phr diff-spk+same-phr diff-spk-diff+phr All All

System EER MinDCF EER MinDCF EER MinDCF EER MinDCF EER MinDCF EER MinDCF

ResNet34 1.13 0.096 21.28 0.914 1.35 0.071 0.64 0.033 10.52 0.698 - -
ResNet34+ft-affine 0.49 0.029 2.40 0.178 1.31 0.066 0.05 0.002 2.89 0.144 - -
ResNet34+ft-full 0.33 0.019 0.73 0.063 0.92 0.047 0.04 0.001 2.00 0.088 - -
ResNet34-no-aug+ft-full 0.30 0.017 0.63 0.051 0.86 0.045 0.01 0.000 - - - -
ThinResNet34+ft-full 0.39 0.022 0.69 0.060 1.12 0.052 0.02 0.001 - - - -
ResETDNN+ft-full 0.61 0.035 0.69 0.061 1.76 0.080 0.03 0.001 - - - -
SE-ResNet34+ft-full 0.31 0.018 0.58 0.046 0.86 0.044 0.03 0.001 1.94 0.085 1.99 0.086
TSE-ResNet34+ft-full 0.33 0.018 0.61 0.054 0.89 0.045 0.03 0.001 - - - -

(ResNet34+ResETDNN)+ft-full 0.33 0.020 0.68 0.061 0.95 0.042 0.01 0.001 1.84 0.078 - -
(ResNet34+ResNet34-no-aug+ThinResNet34+ResETDNN)+ft-full 0.26 0.015 0.59 0.051 0.77 0.034 0.01 0.000 1.69 0.069 - -
(ResNet34+ResNet34-no-aug+ThinResNet34+SE-ResNet34)+ft-full 0.25 0.013 0.50 0.047 0.65 0.032 0.01 0.000 1.62 0.066 - -
(ResNet34+ResNet34-no-aug+SE-ResNet34+TSE-ResNet34)+ft-full 0.23 0.013 0.51 0.047 0.64 0.032 0.01 0.001 1.57 0.064 1.60 0.065

Table 2: Results on Task2

Dev. Prog. Eval.

System EER MinDCF EER MinDCF EER MinDCF

ResNet34+PLDA 2.28 0.083 5.04 0.219 - -
ResNet34+ft-affine+PLDA 1.88 0.064 4.36 0.191 - -
ResNet34+ft-full+PLDA 1.60 0.058 3.72 0.169 - -
ResNet34+ft-full+cos 1.40 0.057 2.96 0.132 - -
ResNet34-no-aug+ft-full+cos 1.43 0.058 - - - -
ThinResNet34+ft-full+cos 1.76 0.067 - - - -
ResETDNN+ft-full+cos+cos 2.38 0.096 - - - -
SE-ResNet34+ft-full+cos 1.35 0.055 - - - -
TSE-ResNet34+ft-full+cos 1.28 0.050 2.64 0.116 2.62 0.116

(ResNet34+ResETDNN)+ft-full+cos 1.50 0.060 3.28 0.141 - -
(ResNet34+ResNet34-no-aug)+ft-full+cos 1.36 0.055 2.65 0.119 - -
(ResNet34+ResNet34-no-aug+SE-ResNet34)+ft-full+cos 1.32 0.052 2.39 0.108 - -
(ResNet34+SE-ResNet34+T-SE-ResNet34)+ft-full+cos 1.27 0.050 2.33 0.105 - -
(ResNet34+ResNet34-no-aug+SE-ResNet34+TSE-ResNet34)+ft-full+cos 1.26 0.050 2.32 0.104 2.31 0.105
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using speaker+phrase as classes. No Voxceleb data was used to
train the back-end. We fused the score of different systems us-
ing linear logistic regression trained on our task1 dev set, but
removing the diff-spk+diff-phr, which are too easy.

3.2. Task 2

We used either LDA+LN+PLDA back-end or cosine scoring.
With fine-tuned networks cosine was better. LDA/PLDA were
trained on our task2 adaptation set (without augmentation). We
fused the score of different systems using linear logistic regres-
sion trained on our task2 dev set.

4. Adaptation/Development Data
4.1. Task 1

From the task1 training set, we selected 814 speakers for
x-vector/PLDA training and 150 speakers to create dev tri-
als. The new training/adaptation set contained 87k utterances,
which became 524k after augmentation. The dev. enrollment
set contained 3339 models, each one made out of 3 utter-
ances. The dev. test set contained 3033 utterances producing
around 10M trials. The were 11,421 target trials, 93,971 same-
spk+diff-phrase non-targets, 1,032,072 diff-spk+same-phrase
non-targets, and 8,989,723 diff-spk-phrase non-targets.

4.2. Task 2

From the task2 training set, we selected 500 speakers for x-
vector/PLDA training and 88 speakers to create dev trials. The
new training/adaptation set contained 73k utterances, which be-
came 439k after augmentation. The dev. enrollment set con-
tained 1349 models. Each model was made with between 2 to
14 utterances. The dev. test set contained 1338 utterances pro-
ducing around 1.8M trials.

5. Results
5.1. Task1

Table 1 shows results for task1. First line shows results with
pre-trained VoxCeleb x-vector (ResNet34). It has high error
in same-spk non-targets since x-vector was trained for text-
independent task. This error was greatly reduced by just fine-
tuning the last affine transform in the x-vector output using
the task2 adaptation set with spk-phrase labels (ResNet34+ft-
affine). Then, the results were improved further by going on
fine-tuning the full network (ResNet34+ft-full). This was con-
firmed by the results in the progress set. We kept this setup for
the rest of neural networks evaluated. ResNet34-no-aug, pre-
trained without augmentation, performed similar to ResNet34
pre-trained with augmentation. ThinResNet34 and ResETDNN
performed significantly worse than the others. ResNet with SE
blocks performed the best on our dev. Our best fusion was a
combination of ResNet34 networks. ThinResNet34 and Re-
sETDNN performed significantly worse than the others. TSE-
ResNet34 performed the best on our dev. Again, our best fusion
was a combination of ResNet34 x-vectors.

5.2. Task2

Table 1 shows results for task2. Here, fine-tuning the full net-
work also performed better than the pre-trained network and
finituning the last x-vector layer. Also, using fine-tuned net-
work, cosine scoring performed better than PLDA, since AAM-

softmax optimize a metric for cosine scoring. We kept this con-
figuration for the rest of the networks.

6. Conclusions
We presented the JHU systems for SDSV 2020 challenge. We
observed that using pre-trained x-vector networks and fine-
tuning the full network on the training data of each task pro-
vided large improvements. On task1 (test-dep), we fine-tuned
using spk-phrase as labels, while in task2 (text-ind), we used
speakers as labels. For task1, PLDA was the best back-end,
while for task2, cosine scoring was better. In our dev. set, the
best single systems were squeeze-excitation ResNets. Our best
fusions were combinations of ResNet34 systems.
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