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Abstract 

This report is about the I2R’s submission to the Short-duration 

Speaker Verification (SdSV) Challenge 2020 text-dependent 

(TD) verification.  Our approach for the challenge consists of 

the fusion Kaldi’s two x-vectors and two i-vectors, GMM-

SVM MFCC subsystem and GMM-SVM BNF subsystem.  

Main efforts have been focused on the pass-phase verification, 

PLDA/NAP backend design and system fusion studies in 

order to improve the system performance for the test-

dependent speaker verification.  DNN posterior and DTW 

methods are applied to conduct the pass-phrase verification.  

we have contributed pass-phase based PLDA or NAP system 

to enhance the system performance.  

Index Terms: speaker recognition, text-dependent, text-

independent, DNN 

1. Introduction 

Task 1 of the SdSV Challenge 2020 [1, 2, 3, 4] is defined as 

speaker verification in text-dependent mode [1, 4, 5]: given a 

test segment of speech and the target speaker’s enrollment 

data, automatically determine whether a specific phrase and 

the test segment was spoken by the target speaker.  

For development (Dev) data set provided by the SdSV 

challenge [1, 2, 3, 4], we choose odd number speaker from the 

train dataset as dev enroll and dev test.  The remaining dev 

data set (even number speakers’ utterances) are used the 

background dataset, such as for the x-vector or i-vector LDA, 

PLDA and GMM-SVM Nuisance Attribute Projection (NAP) 

for the channel compensation.  In the addition, we also use the 

even number speaker utterances in the training dataset to build 

the pass-phrase speaker independent models for the pass-

phrase verification.   

Table 1: SdSV DEV dataset design 

 No spks No 
utts 

Total 
Trials 

TC/IC 
Trials 

TW/IW 
Trials 

Dev Set 

SdSV train  

482 (odd 

num.) 

 51849 6935048 38500/ 

3864000 
1489908/

1542640 

 

For the text-dependent speaker verification, we need to 

consider four test trials scenarios.  Target speaker-Correct 

pass-phrase trials, Imposter speaker-Correct pass-phrase trials, 

Target speaker-Wrong pass-phrase trials and Imposter 

speaker-Wrong pass-phrase trials. We simplify them as TC, 

IC, TW and IW, respectively. So, there will have three type 

imposter trials.  As we know Target speaker-Wrong pass-

phrase trials (TW) is correct trials in the text-independent 

speaker recognition. Based on the above definition, the 

following table shows our designed DEV dataset used for our 

SdSV’s task 1 evaluation. 

We adopted the Kaldi’s SITW [6, 7] and Voxceleb [8] x-

vector and i-vectors as one of subsystems. For the Kaldi 

system, we use the following training data for the model 

training: VoxCeleb 1 & 2, MUSAN [9] (Noise and music 

dataset) and RIRS noise [10] for x-vector and i-vector model 

training. In addition, The Voxceleb 1 & 2 datasets are also 

used to train LDA model and out-of-domain PLDA backend. 

And the 481 even number speakers utterances extracted from 

SdSV train set are used to design in-domain PLDA model 

backend.  Such data set are also used as the NAP for GMM-

SVM system [11].  Subset of SdSV training utterances is also 

used for the score normalization. The details usages of 

datasets are summarized in Table 2. 

Table 2:  Data Usages for the Model Training 

Usages Dataset 

x/i-vector models Voxceleb 1&2 MUSAN (noise and 
music), RIRS. 

LDA, out-of-domain 

PLDA 

Voxceleb 1 & 2 

in-domain PLDA, 
GMM, LDA, PLDA, 

NAP  

SdSV training 481 even number 
speakers utterances extracted from 

SdSV train set 

Score normalization  SdSV training subset utterances 

2. Bottleneck Feature and DNN Posterior 

In this challenge, we follow the implementation described in 

[6, 12] to generate BNF [13]. The Kaldi’s script [6] and 

Librispeech [14] clean datasets are used to train the model. 

Once the DNN is trained, the linear outputs of bottleneck 

layer are extracted to 64 dimensions BNF.  Meanwhile, we 

also use the model to extract all the SdSV’s task 1 utterance 

DNN posteriors, which will be used for the pass-phrase 

verification next. 

3. Pass-Phrase Verification 

For the text dependent speaker recognition, the pass-phrase 

verification is one of the key complements.  Normally, the 

DNN pass-phrase verification [15, 16] is to compute distances 

between target and test speaker utterances by using their DNN 

posterior after applying DTW alignment. The DTW algorithm 

takes two sequences as input and matches their content by 

finding the path with the smallest alignment between them.   

One of the problems for such directly approach is the 

computation cost. Each test trial will do the computation 

between model utterances and testing utterance.  Another 
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problem is how to choose the decision threshold.   Such 

threshold may vary with different utterances and noisy 

condition.  In the SdSV’s challenge, there are ten fixed pass-

phrases [1, 2]. 

We build speaker-independent pass-phrase DNN 

posteriors from Dev train set (using 481 even dev-train 

speaker related pass-phrase utterances).  We cannot use all dev 

training utterances to do the pass-phrase verification due to 

huge testing and comparing costs. Here we build a speaker 

dependent pass-phrase verification method.  we only select 

partial pass-phrase DNN posterior to build common pass-

phrase DNN posterior.   

The detailed experimental results will be presented in 

Section 5. 

4. Kaldi and GMM-SVM Systems 

Authors must proof read their PDF file prior to submission to 

ensure it is correct. Authors should not rely on proofreading 

the Word file. Please proofread the PDF file before it is 

submitted. 

4.1 Kaldi’s Based Systems 

we used the Kaldi SITW/Voxceleb 16khz x-vector recipe [6]. 

The Voxceleb1 and Voxceleb2 dataset [8] were used for the 

DNN background model.  Then, we extracted the utterances 

related x-vectors or i-vectors from all the subset of the dev-

train as the LDA.  The PLDA is built in the two methods:  

A. First one is to use all the dev-train even pass-phase x-

vector as the PLDA.  The same speaker and same pass-

phrase are grouped to one cluster to compute the PLDA 

model. Symmetric score normalization (S-norm) is 

selected as the cohort that contains 11000 utterances x-

vectors or i-vectors random selected from dev-train 

subset, which contains all 10 pass-phrase utterance x-

vectors or i-vectors.  

B. Another one is pass-phrase dependent PLDA.  Only same 

pass-phrase speaker model related trials are modeling and 

testing.  The LDA is the same as the above.  S-norm uses 

the cohort that only contains the same pass-phrase 

utterances random selected from dev-train subset.  2000 

utterances for each pass-phrase are selected for each 

phase-phrase.  We select top 10% scores for both these 

two methods  

4.2 GMM-SVM System 

Based on the MFCC (50 dims), BNF (64 dims) and MFCC 

combined BNF tandem (114 dims) features, we use GMM-

SVM to build these three subsystems.  

The GMM-SVM system uses these three features separately 

to extract their related supervectors to construct kernels of 

support vector machines (SVMs). The 256 Gaussian mixture 

component models are trained.  The means of the GMM 

mixture components is subtracted to construct the supervector 

by extracted its mean and normalized by the unit norm. 

As a result, the 64 dimensions bottleneck feature was 

expanded into 16384 dimension supervector. 50 dimension 

MFCC into 12800 dimension supervectors and the tandem 

feature into 29184 dimension supervectors.  For each 

supervectors, we build two schemes for channel or pass-phrase 

compensation.  Similar to Kalid’s PLDA approach, we have 

used two NAP approaches for the pass-phrase compensation 

A. One is to use all the speaker related pass-phrase cluster to 

build a NAP, namely: global NAP, which includes all the 

ten dev-train pass-phrases.  Similarly, the same speaker 

and the same pass-phrase utterances are extracted to form 

a NAP cluster.  

B. Another one is to use individual pass-phrase speaker 

supervectors to build pass-phrase dependent NAP.  

Score normalization (Z-norm) [11, 12] is conducted for 

these GMM–SVM systems. We have random selected 1000 

utterances from train-dev dataset for global GMM-SVM 

system to do the z-norm.  For the pass-phrase dependent 

GMM-SVM approach, only pass-phrase related 800 utterances 

from dev-train set are selected to do the z-norm,   

5. Experimental Results 

In this Section, the detailed experimental results are provided.  

We firstly demonstrated the effect of pass-phrase verification 

on the EER and minDCF differences before and after applying 

the pass-phrase verification.  In Section 5.2, we have given the 

detailed results of four subsystems: namely, Kaldi’s based four 

subsystems, GMM-SVM MFCC, GMM-SVM BNF system 

and GMM-SVM tandem subsystem.  The comparison results 

of globale PLDA or NAP approach and Pass-phrase PLDA or 

NAP are also provided. Finally, the fusion results are showed 

in Section 5.3. the designed DEV dataset and Evaluation EER 

and MinDCF are used to do the comparisons.  Since the EER 

and minDCF results of 30% test progress set and 70% test 

evaluation set are similar, especially for the minDCF values.  

we only report the test 70% evaluation set for the score 

analysis.  

We use the Bosaris toolkit [17] to do the fusion in our 

submission. The proposed SdSV Dev subset trials are used for 

the parameters tuning.  In this challenge, we submitted 2 

scores: one is the primary fusion score and another one is the 

best single system to demonstrate the fusion effects. 

5.1. Pass-Phrase Verification Results 

One of major challenge is to detect Target Speaker-Wrong-

pass-phrase (TW) related trials for the pass-phrase speaker 

recognition.  Meanhile, we can use the TC-TW performance to 

evaluation the performance of the pass-phrase verification.  In 

such way, we can compute the performance of the pass-phrase 

in the following two ways: 

1. Pass-phrase verification accuracy:  we use dev enroll and 

testing data to check the overall pass-phrase identification 

accuracy.  Since each speaker model uses three same 

pass-phrase utterances to do the enroll.  We can have two 

pass-phrase verification identification rates. One is the 

model enroll pass-phrase identification rate and another is 

thed single testing utterance identification rate. 

2. TC-TW speaker verification performance:  We can also 

compute TC-TW related trials EER and minDCF to 

demonstrate the importance of the Pass-phrase 

verification. 

We achieved 100% identification rate for the dev set enroll 

model and 99.876% for all the dev test utterances.   To show 

the speaker verification TC-TW trial subtask performance and 

our dev and evaluation tasks, we used our single best GMM-

SVM Tandem system to show the effect of the pass-phrase 

verification.  Table 3 and Table 4 show the performances of 

TC-TW subtasks and the DEV/Eval whole trials tasks.   
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Table 3. TC-TW subtask EER and minDCF 

 Dev dev  Eval (70%) 

EER(%) minDCF EER(%) minDCF 

No Verif. 46.93 1 NA NA 

with Verif. 0.004 0.0004 0.01 0.0001 

Table 4 Dev and Eval Data Tandem SMM-SVM Overall 

Performance. 

 Dev Eval (70%) 

EER(%) minDCF EER(%) minDCF 

No Verif. 2.811 0.4204 3.361 0.167 

With verif 

key. 

0.967 0.0636 2.346 0.073 

True key 0.967 0.0635 NA NA 

5.2. Results of Four Approached Subsystems 

In the section, we presented our four different approaches: 

Kaldi’s SITW/Voxceleb x-vector and i-vector, GMM-SVM 

MFCC, GMM-SVM BNF and GMM-SVM Tandem systems.   

The comparison focus on the Global PLDA or NAP and Pass-

phrase dependent PLDA or NAP.  

The subsystems of each approach is summarized in Table 5, 

6, 7 and 8, respectively for Kaldi system, three GMM-SVM 

systems.  All the results are output after applying the pass-

phased verification.  

Table 5. The Kaldi System DEV Results 

SdSV’s DEV 

SET 

Global PLDA Pass-phrase PLDA 

EER(%) minDCF EER(%) minDCF 

SITW-

ivector 

2.118 0.141 1.737 0.136 

SITW-
xvector 

1.506 0.113 1.342 0.105 

Voxceleb-

ivector 

2.113 0.140 1.760 0.132 

Voxceleb-
xvector 

1.506 0.113 1.327 0.104 

Fusion all 1.246 0.0843 1.004 0.0742 

Table 6. GMM-SVM MFCC Subsystems 

GMM-SVM   

MFCC 
DEV dataset Eval dataset (70%) 

EER(%) minDCF EER(%) minDCF 

Global NAP 2.503 0.171 3.855 0.142 

Pass-phrase NAP 1.914 0.125 3.318 0.115 

Fusion 1.496 0.100 2.810 0.095 

Table 7. GMM-SVM BNF system before 

GMM-SVM 

BNF 

DEV dataset Eval dataset (70%) 

EER(%) minDCF EER(%) minDCF 

Global NAP 1.980 0.151 3.324 0.123 

Pass-phrase NAP 1.723 0.125 2.994 0.107 

Fusion  1.347 0.104 2.656 0.094 

Table 8. GMM-SVM Tandem system 

GMM-SVM 

Tandem 

DEV dataset Eval dataset (70%) 

EER(%) minDCF EER(%) minDCF 

Global NAP 1.019 0.070 2.101 0.067 

Pass-phrase NAP 0.967 0.064 2.346 0.073 

Fusion  0.838 0.054 1.931 0.059 

5.3.  I2R Final Dev Sets and Submission Eval Sets Results  

The I2R final submission consists of the four subsystem linear 

fusion with DNN Posterior pass-phrase verification by using 

Bosaris toolkit [17].    

In order to demonstrate the complementary effects for our 

four subsystems, Table 9 shows the Eval dataset and Dev 

subset (EER) performance progresses starting from Kladi’s 

fusion with fusion of other subsystems to demonstrate the 

complementary effect of these four subsystems.    

Table 9. Fusion results of Different Subsystems Combination. 

 Dev dev  Eval (70%) 

 EER(%) minDCF EER(%) minDCF 

Kaldi 1.004 0.075 2.426 0.083 

Kaldi+GMM 
MFCC 

0.779 0.055 2.094 0.064 

Kaldi+GMMBNF 0.695 0.0444* 1.976 0.0554 

Kaldi+GMM-

SVM/BNF 

0.620 0.0406 
1.802 0.0499 

Final fusion4 0.573 0.0379 1.690 0.0470 
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