
Short-duration Speaker Verification Challenge 2020 Technical Report

System description of Team05 for SdSV Challenge 2020

Anonymous Author1

1Anonymous Affiliation
author@mail.com

Abstract

In this report, we describe the submission of Team05 to the
SdSV Challenge 2020.
Index Terms: speaker recognition, speaker embeddings

1. Introduction
The SdSV Challenge 2020 includes two tasks: text-independent
and text-dependent speaker verification. Since our solutions
for both tasks are based on text-independent systems, first, we
will focus on the text-independent scenario and discuss the text-
dependent case towards the end of this report.

2. Experimental setup
2.1. Training data

For both tasks we used all available training data including Vox-
Celeb1 [1], VoxCeleb2 [2], LibriSpeech [3] datasets and the
corresponding training parts of the DeepMine dataset [4] (due
to challenge rules we used text-dependent part of DeepMine for
Task 1 and text-independent part for Task 2) . Specifically, we
combined the development parts of VoxCeleb1 and VoxCeleb2
datasets which have 1152 and 5994 speakers, respectively. This
results in over a million speech segments in total. Then we
added 2338 speakers from the LibriSpeech dataset. Finally, we
included a random subset of the training partition of the Deep-
Mine dataset which contains 90% of all speakers.

2.2. Development data

We used the trial list consisting of 37, 720 pairs provided on
the Voxceleb1 website1. These trials include speakers from the
test part of the VoxCeleb1 dataset. Also we created a list of
200, 000 trials from our test split of DeepMine dataset which
includes 10% of available speakers.

3. System description
Our approach is based on recent advances in the field of speaker
recognition where deep neural networks (DNNs) play an impor-
tant role.

3.1. Pre-processing

We followed the Voxceleb recipe2 from Kaldi for training
DNNs used to extract utterance-level speaker embeddings. We
added the following augmentations to the original speech seg-
ments:

1http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/meta/veri_test.txt

2https://github.com/kaldi-asr/kaldi/blob/
master/egs/voxceleb/v2/

• Reverberation using RIRs3

• Additive noise: Musan4 noise

• Additive noise: Musan music

• Additive noise: Musan babble

Each type of noise was added with different SNRs as it was done
in the Kaldi recipe. We did not apply any voice activity detec-
tion (VAD) to the input signals. As can be seen from the eval-
uation metrics, VAD was not a critical ingredient for building a
relatively accurate speaker verification system for this data.

3.2. Features

We used two feature representations of audio signal to train
different speaker embedder networks: 30-dimensional MFCCs
and 40-dimensional log filterbanks. Our implementation
is based on the open-source python speech features5

package. Both features were extracted from signal frames of
25ms length with 10ms shift. Frequency limits were set to 20-
7600 Hz. Both features were mean normalized within the entire
feature sequence.

3.3. Embedding extractors

We used two different topologies of neural networks to ex-
tract speaker embeddings. The first one is the well-known x-
vector topology proposed in [5]. We used the same network
architecture as in the aforementioned Kaldi recipe. The sec-
ond one is based on the ResNet34 topology from [6] which out-
performed the x-vector approach in the recent VoxCeleb SRC
Challenge 2019 [7]. It uses statistical pooling which accumu-
lates mean and standard deviation statistics for the frame-level
outputs to get a fixed-dimensional utterance-level representa-
tion. We compared a few alternative ResNet architectures in-
cluding ResNet50 and found that the one used in [8] yields the
best performance on the development data. We selected it for
our experiments. Our implementations are based on the Py-
Torch framework [9].

Each network was trained with all available training data
and then fine-tuned on the training split of the DeepMine
dataset. We found that including DeepMine data to the train-
ing set leads to slightly better performance compared to using
only VoxCeleb and Librispeech at the training stage.

We followed the two-stage training strategy described in
[8]. First, the network was trained with the standard Softmax
loss. Second, on the fine-tuning stage, the additive angular mar-
gin loss (further referred to as AAM-Softmax) was used after
removing all the layers following the embedding layer. We used
the AAM-Softmax loss with scale s = 30 and margin m = 0.2.

3http://www.openslr.org/resources/28/rirs_
noises.zip

4http://www.openslr.org/17/
5https://pypi.org/project/python_speech_

features/

http://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt
http://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt
https://github.com/kaldi-asr/kaldi/blob/master/egs/voxceleb/v2/
https://github.com/kaldi-asr/kaldi/blob/master/egs/voxceleb/v2/
http://www.openslr.org/resources/28/rirs_noises.zip
http://www.openslr.org/resources/28/rirs_noises.zip
http://www.openslr.org/17/
https://pypi.org/project/python_speech_features/
https://pypi.org/project/python_speech_features/


Short-duration Speaker Verification Challenge 2020 Technical Report

We did not find any considerable difference between this strat-
egy and the annealing procedure proposed in [10] where the
margin parameter of the loss function is gradually increased
during training.

We used chunks of 200 frames for training both embedder
networks. These chunks were obtained by random cropping of
the training segments. In the testing stage, embeddings were ex-
tracted from the full-length feature sequences without any crop-
ping.

The x-vector network was trained using Adam [11] opti-
mizer while the ResNet network was trained using SGD with
momentum=0.9 and weight decay=0.0001. We stopped train-
ing when EERs computed on the development data stopped de-
creasing.

3.4. Backend

We used different backends for the x-vector and ResNet based
embeddings.

In the former case we used linear discriminant analysis
(LDA) without dimensionality reduction together with the prob-
abilistic LDA (PLDA) based scoring [12]. Prior to apply-
ing LDA, embeddings were centered with the center computed
from the training split of the DeepMine dataset. The backend
pipeline was trained on the embeddings extracted from the orig-
inal speech segments without any augmentation.

For the ResNet based embeddings we used cosine similar-
ity based scoring followed by the score normalization. Specifi-
cally, adaptive s-norm [13, 14] with 300 top-scoring impostors
was applied to the raw cosine similarities. The impostor cohort
was created by averaging embeddings for each speaker in the
training split of the DeepMine dataset.

We found that LDA-PLDA based scoring does not help
when embeddings are extracted with ResNet. At the same time,
applying the regularized version of WCCN (RWCCN) [15] to
the raw embeddings improves the system performance. In our
implementation of RWCCN we added identity matrix with a
small coefficient to the estimated within-class covariance ma-
trix. While, in principle, this coefficient can be estimated on the
development data we simply used 0.01 in all our experiments.
Table 1 summarizes these results.

Backend Training data EER, % minDCF
LDA-PLDA VoxCeleb2 3.27 0.1646
LDA-PLDA DeepMine 3.15 0.1610
RWCCN, cos, s-norm DeepMine 2.02 0.0963

Table 1: Comparison of different backends for embeddings ex-
tracted with ResNet34. Performance metric are borrowed from
the challenge Leaderboard.

We were unable to get considerable improvement by doing
fusion of the ResNet and the x-vector based sub-systems, there-
fore we decided to replace the latter one by another ResNet.

Our primary system consists of two ResNet34 embedding
networks where the first one was trained using all available data
while the second one was trained on on the development parts
of the VoxCeleb dataset. Both systems use the same backend
which includes RWCCN before cosine scoring followed by the
score normalization. Score fusion was done by computing the
weighted average of the scores of the selected systems where
the weights were set to 3 and 1, respectively. We used the first
system for the single-system submission. Its performance is
shown in the last row in Table 1.

4. Text-dependent task
In contrast to the text-independent case, in the text-dependent
task of the challenge one needs to design a system for joint
speaker & utterance verification (SUV).

Our solution for the text-dependent scenario is based on
fusing the scores from independent speaker verification (SV)
and utterance verification (UV) systems. Our SV system is
identical to the one used in the text-independent scenario with
the only difference that the part of the DeepMine dataset corre-
sponding to this task was used for training. To be more specific,
RWCCN together with adaptive s-norm were used to obtain the
final SV scores. In this task we also used a subset of DeepMine
data including 10% of speakers for evaluating our systems.

We built and compared two systems for utterance verifica-
tion.

The first one is a GMM-based monophone HMM system
that was trained on the union of english and farsi phones from
the DeepMine dataset. We have used 13-dimentional MFCC
with delta and delta-delta features. The decodings of the test
data that were produced with the HMM were used to generate
binary scores for the list of trials.

Since this system produces only binary verification labels
we used the following rule to obtain the final score:

• same phrase – keep the original SV score unchanged,

• different phrases – subtract a large constant value from
the SV score

We found that this strategy is comparable to a trainable score
fusion, and we used it in our experiments. Our implementation
of this system was based on the Kaldi toolkit.

The second UV system is based on a DNN with the same
architecture as the x-vector extractor [5]. We trained this net-
work to classify phrases on the DeepMine and VoxCeleb1&2
datasets. The speech segments from VoxCeleb were labeled as
‘other’ class during training. We found that including Voxceleb
helps to increase classification accuracy for 10 phrases from the
DeepMind dataset. Given the trained network we extract phrase
embeddings and train the LDA projection with 10 classes on the
training split of the DeepMine dataset. Finally, utterance veri-
fication is done by computing cosine similarities between the
projected phrase embeddings. As in the previous case we ob-
tained the (binary) hard labels by thresholding similarity scores.
The threshold was determined using our development split of
the DeepMine dataset. We found that this system leads to a
slightly better overall performance, and we adopted it for fur-
ther experiments.

We also explored an alternative approach to build a SUV
system which is also based on a phrase classifier. Here we ap-
plied phrase-dependent affine transformations to the extracted
speaker embeddings using the estimated phrase labels. Those
transformations were jointly trained using the logistic affin-
ity loss [16] on the binary labels aiming at segregating the
‘target-correct’ class from other types of trials: ‘target-wrong’,
‘impostor-correct’ and ‘impostor-wrong’. To this end we di-
vided the training set into mini-batches such that each of those
includes multiple instances of the same phrase uttered by the
same speaker. The loss is computed using a square matrix of all
pairwise cosine similarities within a mini-batch.

We used the Gaussian backend [17] to obtain the phrase
labels from the LDA-projected phrase embeddings described
above. This phrase classifier has accuracy above 99% on the
development set.



Short-duration Speaker Verification Challenge 2020 Technical Report

Table 2 demonstrates the results for speaker & utterance
verification with both approaches described above.

System EER, % minDCF
SV & UV score fusion 2.96 0.1196
Phrase-dependent projections 2.84 0.1194

Table 2: Comparison of two strategies for obtaining SUV scores
from given speaker embeddings and phrase labels. Perfor-
mance metric are borrowed from the challenge Leaderboard.
See the text for details.

Our primary system consists of in independent SV sub-
system based on ResNet34 and the x-vector based phrase clas-
sifier. The final SUV scores were obtained as cosine similarities
between embeddings after after applying phrase-dependent pro-
jections described above.

5. References
[1] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A large-

scale speaker identification dataset,” in Proc. Interspeech 2017,
2017, pp. 2616–2620.

[2] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” in Proc. Interspeech 2018, 2018, pp. 1086–
1090.

[3] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[4] H. Zeinali, H. Sameti, and T. Stafylakis, “DeepMine speech pro-
cessing database: Text-dependent and independent speaker veri-
fication and speech recognition in Persian and English.” in Proc.
Odyssey 2018 The Speaker and Language Recognition Workshop,
2018, pp. 386–392.

[5] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, 2016.

[7] J. S. Chung, A. Nagrani, E. Coto, W. Xie, M. McLaren, D. A.
Reynolds, and A. Zisserman, “Voxsrc 2019: The first voxceleb
speaker recognition challenge,” ISCA Challenges, 2019.

[8] H. Zeinali, S. Wang, A. Silnova, P. Matejka, and O. Plchot, “BUT
system description to voxceleb speaker recognition challenge
2019,” CoRR, vol. abs/1910.12592, 2019. [Online]. Available:
http://arxiv.org/abs/1910.12592

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035.

[10] Y. Liu, L. He, and J. Liu, “Large margin softmax loss for speaker
verification,” ArXiv, vol. abs/1904.03479, 2019.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[12] A. Sizov, K. A. Lee, and T. Kinnunen, “Unifying probabilis-
tic linear discriminant analysis variants in biometric authentica-
tion,” in Structural, Syntactic, and Statistical Pattern Recognition,
P. Fränti, G. Brown, M. Loog, F. Escolano, and M. Pelillo, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 464–
475.

[13] P. Matejka, O. Novotný, O. Plchot, L. Burget, M. D. Sánchez,
and J. Cernocký, “Analysis of score normalization in multilingual
speaker recognition,” in INTERSPEECH, 2017.

[14] D. E. Sturim and D. A. Reynolds, “Speaker adaptive cohort se-
lection for tnorm in text-independent speaker verification,” in in
Proc. ICASSP, 2005, pp. 741–744.

[15] H. Zeinali, H. Sameti, and L. Burget, “HMM-based phrase-
independent i-vector extractor for text-dependent speaker verifica-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 7, pp. 1421–1435, 2017.

[16] J. Peng, R. Gu, and Y. Zou, “Logistic similarity metric learn-
ing via affinity matrix for text-independent speaker verification,”
in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2019, pp. 704–709.

[17] M. McLaren, A. Lawson, Y. Lei, and N. Scheffer, “Adaptive
gaussian backend for robust language identification,” in INTER-
SPEECH, 2013.

http://arxiv.org/abs/1910.12592

	 Introduction
	 Experimental setup
	 Training data
	 Development data

	 System description
	 Pre-processing
	 Features
	 Embedding extractors
	 Backend

	 Text-dependent task
	 References

