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Abstract

The GMM is a widely popular approach for modeling the acous-
tic information and HMM is popular for temporal dynamics
modeling. We used to GMM-HMM model to represent and
characterize the speaker and temporal information in the text-
dependent speaker verification task. The entire system is devel-
oped on Kaldi.

1. System Description
In the text-dependent speaker verification has been popular in
recent years due to its applicability in smart devices. Earlier
temporal modeling approaches such as dynamic time warping
(DTW), a hierarchical multi-layer acoustic model (HiLAM)is
proposed based on Gaussian mixture model (GMM)-hidden
Markov model (HMM) architecture, i-vector/HMM and un-
supervised HMM-universal background model (UBM), joint
speaker-utterance model with GMM-HMM, DNN-HMM, etc.
These techniques uses speaker modeling and temporal model-
ing techniques together for text-dependent SV task [1–8]. In
this work, we are using GMM-HMM model for text-dependent
speaker verification.

1.1. Feature Extraction

The short term processing is performed on the entire database
with a frame size of 25 ms and a shift of 10 ms. 60-dimensional
mel frequency cepstral coefficient (MFCC) features including
delta coefficient are extracted for every frame considering 23
logarithmically placed mel filters. There is no voice activity
detection applied as the SV framework used in this work as we
can ignore the silence frames in likelihood computation. We
have not used any other data except Task1 SdSV data [9]. Also,
we have not used any data augmentation schemes. We have only
submitted a single system.

1.2. Training and Enrollment
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Figure 1: Training and Enrollment for GMM-HMM speaker
verification.

The lexical information in a speech can be realized in terms
of phonetic sequence and speaker information is captured in
MFCC features. We used the phonetic transcription provided
by the organizers. We train the monophone HMM models us-
ing the entire train set and build a Universal background model
(λUBM ). During Enrollment, we adapt the speaker-utterance
model using the pair of speaker and utterance ids using MAP
adaptation. In the experiment, we use the smoothing constant
τ in the MAP adaptation script of Kaldi as 15. We call it a
speaker-utterance model, i.e., (λspk−utt). Figure 1 shows the
training and enrollment procedure.

1.3. Testing

During the testing phase, we use the testing features X and the
claimed speaker-utterance model λspk−utt. We use transcrip-
tion W from the claimed speaker-utterance model, i.e., utter-
ance id. To compute the background likelihood scores, we use
the universal background model λUBM . Thus, the final likeli-
hood score can be computed as follows:

SWX = logP (X|λspk−utt,W)− logP (X|λUBM ,W) (1)
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Figure 2: Testing for GMM-HMM speaker verification.

The likelihood computation procedure in the testing phase
is shown in Figure 2. In testing score submission, we have not
used any score normalization approaches. We neglected silence
as it does not contribute to the speaker verification task.

2. Results
There are two baseline systems provided by the organizers,
namely, i-vector/HMM [7] and X-vector [10]. These ap-
proaches are widely adopted in both text-dependent and text-
independent speaker verification systems. Results are analyses
in different cases. Experimental results are tabulated in Table
1 and Figure 3 shows the DET curve for two baseline systems
and our system. It can be observed that our system outperforms
the x-vector system in the majority of the test condition and
operating threshold on DET curve but it does not outperform
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Table 1: Experimental Results

Trial conditions EER min DCF
X-vector I-vector/HMM Our system X-vector I-vector/HMM Our system

progress 9.05 3.47 6.96 0.529 0.1472 0.3146
progress-male 7.9 2.53 6.54 0.4927 0.1302 0.319

progress-female 9.54 4.05 7.17 0.5348 0.1569 0.3004
progress-EN 9.33 3.56 6.79 0.4645 0.12 0.2535
progress-FA 8.9 3.43 6.9 0.534 0.1659 0.3313

progress-TC-vs-IC 4.47 3.07 5.69 0.1987 0.1021 0.2451
progress-TC-vs-TW 19 4.92 10.17 0.7719 0.24 0.452
progress-EN-male 7.99 2.53 6 0.4193 0.1052 0.2466

progress-EN-female 9.95 4.12 7.2 0.4742 0.1285 0.2559
progress-FA-male 7.98 2.47 6.41 0.5066 0.1422 0.3229

progress-FA-female 9.21 3.97 6.94 0.5382 0.1795 0.3156
evaluation 9.05 3.49 7.01 0.5287 0.1464 0.3163

evaluation-male 7.77 2.41 6.49 0.4919 0.1277 0.3171
evaluation-female 9.62 4.08 7.25 0.5364 0.157 0.3042

evaluation-EN 9.32 3.55 6.91 0.4611 0.1204 0.255
evaluation-FA 8.87 3.43 6.91 0.5388 0.1642 0.3333

evaluation-TC-vs-IC 4.44 3.04 5.75 0.1984 0.1019 0.2456
evaluation-TC-vs-TW 19.02 4.86 10.2 0.7747 0.2387 0.4527
evaluation-EN-male 7.9 2.48 6.09 0.4167 0.1041 0.2456

evaluation-EN-female 9.97 4.18 7.27 0.4694 0.1299 0.2586
evaluation-FA-male 7.8 2.36 6.29 0.5058 0.1394 0.3182

evaluation-FA-female 9.31 4.03 7.07 0.5441 0.1775 0.3214
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Figure 3: DET curve.

i-vector/HMM for all the cases. Overall results indicate that
lesser speaker discrimination performance (TC-vs-IC). It is bet-
ter than the x-vector system for TC-vs-TW trial categories.
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