
Short-duration Speaker Verification Challenge 2020 Technical Report

The SNU-HIL System Description for the SdSV Challenge 2020

Sung Hwan Mun, Woo Hyun Kang, Min Hyun Han, and Nam Soo Kim

Department of Electrical and Computer Engineering and the Institute of New Media and
Communications, Seoul National University, Seoul, South Korea

{shmun, whkang, mhhan}@hi.snu.ac.kr, nkim@snu.ac.kr

Abstract
This paper describes the submission of Seoul National Uni-
versity Human Interface Lab (SNU-HIL) to the Short-duration
Speaker Verification (SdSV) Challenge 2020. We focused on
Task1 of the challenge, which was text-dependent speaker veri-
fication. The submitted our systems were composed of TDNN-
based and ResNet-based front-end architectures with different
pooling methods and objective functions. We also leveraged
state-of-the-art automatic speech recognition (ASR) model for
our proposed pooling strategy considering the lexical content
and for estimating the posterior of phrase for score compen-
sation. The performance of systems was verified through co-
sine similarity back-end and score normalization was applied
for corresponding systems. On Task1’s evaluation subset of
the SdSV Challenge 2020, our single system achieved 0.1307
MinDCF and 3.18% EER. The finally submitted primary sys-
tem was the fusion of different systems with score compensa-
tion and it obtained 0.0785 MinDCF and 2.23% EER on the
challenge’s evaluation subset. Besides, we reported the results
of Task2 submitted to the challenge.
Index Terms: SdSV Challenge 2020, speaker verification.

1. Introduction
We present the submission of Seoul National University Human
Interface Laboratory (SNU-HIL) to the Short-duration Speaker
Verification (SdSV) Challenge 2020. The main purpose of this
challenge is to evaluate new techniques for text-dependent and
text-independent speaker verification in a short duration sce-
nario [1]. The evaluation dataset used for the SdSV Challenge
2020 was derived from the multi-purpose DeepMine dataset
[2, 3]. We mainly submitted our systems to Task 1 of the SdSV
Challenge 2020, which was focused on text-dependent speaker
verification (TD-SV).

In this work, our contribution is twofold. The first was
the aggregation method using the frame-level estimated pos-
teriors. We showed that this method is valid and effective in
the text-dependent task through the results on the challenge’s
progress and evaluation subsets. The second was an effort to
apply the techniques used in the text-independent task, which
is optimized to separate only the speaker, to the text-dependent
task. Instead of optimizing to separate both the speaker and the
phrase at the same time, we firstly focused on discriminating
each class well individually and then combined the two results
later through the score compensation approach. For the speaker
embedding network training, we used the popular techniques in
the text-independent task. In terms of classifying the phrase, we
leveraged the estimated frame-level posteriors of phrase using
the state-of-the-art automatic speech recognition (ASR) model
that outputs a probability distribution over characters per frame.
Also, we verified that the combination of the results obtained
from both processes significantly improve the performance, and

the fusion of different systems we used produced the best per-
formance in the SdSV Challenge 2020 task1. On top of that, we
reported the results submitted to task 2.

The rest of this paper is organized as follows: Section 2
describes all components of our systems and Section 3 details
the experimental conditions. Section 4 presents the results on
the challenge’s trial subsets we submitted. Finally, we conclude
in section 5.

2. System components description
2.1. Front-end

In our systems, we used two types of front-end networks for ex-
tracting utterance-level speaker embedding: TDNN-based sys-
tems [4] and Thin ResNet34-based architectures [5].

2.1.1. TDNN-based architecture

The configuration of TDNN-based systems was based on the
standard Kaldi recipe for the x-vector system [4, 6] and further,
we made use of its modified structure shown as Table 1 for two
purposes: leveraging character-level pooling strategy described
in Section 2.2 and estimating the posteriors of phrase for score
compensation described in Section 2.5. The input acoustic fea-
ture used in this architectures was log Mel-filterbank energies
calculated from 20ms windows with a 10ms hop size and ex-
tracted by utilizing Librosa toolkit [7]. We selected 512 and
580 speaker embedding dimensions for statistics pooling and
character-level pooling respectively. Our implementation and
speaker embedding network training was based on Tensorflow
toolkit [8].

2.1.2. ResNet-based architecture

The second front-end network was the ResNet-based system.
We employed Thin ResNet34 architecture recently proposed
by the authors in [5] (See Table 2). Compared to the origi-
nal ResNet [9], Thin ResNet34 has only a quarter of channels
in each residual block. We used 257-dimensional short-time
Fourier transform (STFT) with 200-300 frames crop as input
acoustic feature in this architecture and chose 256 dimensions
for utterance-level speaker embedding. For implementation and
training, we used Pytorch toolkit [10] and developed the sys-
tems based on the architectures in [11].

2.2. Pooling methods

In the TI-SV task, recently, numerous pooling mechanisms have
been proposed such as a statistics pooling [4], a self-attentive
pooling [12], a learnable dictionary encoding (LDE) pooling
[13], a mutual information neural estimate (MINE) based pool-
ing [14]. In this work, we employed various pooling methods
proposed in the TI-SV task. Also, we propose a pooling strat-

Short-duration Speaker Verification Challenge 2020 Technical Report

Table 1: TDNN-based front-end configuration for character-level pooling and score compensation. (d× n) indicates concatenation of
n vectors, where the dimensionality of each vector is d. T: The number of segment frames, N: The number of speakers, M: The number
of phrase types, CLP: Character-Level Pooling, LC: Locally-Connected, FC: Fully-Connected, BN: Batch Normalization

Layer Configuration for character-level pooling method Configuration for score compensation method

TDNN Context Output Size TDNN Context Output Size

Input Log Mel-FBANK - 64 × T Log Mel-FBANK - 64 × T
Frame1 512, stride 2, ReLU, BN 5, [t-2 : t+2] 512 × T 1536, stride 2, ReLU, BN 5, [t-2 : t+2] 1536 × T
Frame2 512, stride 1, ReLU, BN 3, [t-2, t, t+2] 512 × T 512, stride 1, ReLU, BN 3, [t-2, t, t+2] 512 × T
Frame3 512, stride 1, ReLU, BN 3, [t-3, t, t+3] 512 × T 512, stride 1, ReLU, BN 3, [t-3, t, t+3] 512 × T
Frame4 512, stride 1, ReLU, BN 1, [t] 512, stride 1 256, stride 1, ReLU, BN 1, [t] 256 × T
Frame5 1536, stride 1, ReLU, BN 1, [t] 1536 × T 256, stride 1, ReLU, BN 1, [t] 256 × T
Pooling CLP T, [1 : T] (1536 ×29)× 1 CLP T, [1 : T] (256 ×29)× 1
Segment1 LC (speaker embedding) T, [1 : T] (20 ×29)× 1 LC T, [1 : T] (20 ×29)× 1
Segment2 FC T, [1 : T] 512 × 1 FC T, [1 : T] 512 × 1
Softmax FC T, [1 : T] N × 1 FC (posterior of phrase) T, [1 : T] M × 1

Table 2: Thin ResNet34-based front-end configuration.

Layer Thin ResNet34 Output Size

Input STFT 257 × T× 1

Conv1
7×7, 16, stride 2 129 × T / 2× 16

3×3, max pooling, stride 2 65 × T / 4× 16

Conv2
[

3× 3, 16
3× 3, 16

]
×3, stride 1 65 × T / 4× 16

Conv3
[

3× 3, 32
3× 3, 32

]
×4, stride 2 33 × T / 8× 32

Conv4
[

3× 3, 64
3× 3, 64

]
×6, stride 2 17 × T / 16× 64

Conv5
[

3× 3, 128
3× 3, 128

]
×3, stride 2 9 × T / 32× 128

FC 9×1, 256, stride 1 1 × T / 32× 256

egy suitable for the text-dependent task by leveraging a frame-
level probability distribution of each character estimated from
the CTC-based ASR model. Pooling methods we used are as
follows:

• Statistics Pooling [4]
• Self-Attentive Pooling [12]
• GhostVLAD Pooling [13]
• Character-Level Pooling

2.2.1. Character-level pooling

For extraction of utterance-level representations, The statistics
pooling (SP) computes mean and standard deviation over the
frame-level features. In the attentive pooling (SAP), the atten-
tion score is computed for each frame. In the meantime, the
LDE pooling assumes that frame-level features are distributed
in C clusters and it learns a dictionary with the centers of those
clusters.

To consider the lexical context in TD-SV task, instead, we
focused on the probability distribution of each character per
frame-level feature. The probability of a character given a
frame-level feature, i.e., the posterior, is denoted by:

πk,i = P (C̃ = ck|hi) (1)

where the set C̃ = {ck| ck is kthcharacter, 1 ≤ k ≤ K},
and hi is ith frame-level feature with D1 dimensions where
1 ≤ i ≤ T . K indicates the number of symbols in the char-
acter set, and T is the number of segment frames. To estimate
πk,i, we leveraged decoder outputs of CTC-based end-to-end
ASR model, termed Jasper, proposed [15]. Since this model
was trained by using the Connectionist Temporal Classification
(CTC) loss, our character set consisted of a total of 29 symbols
including all alphabets (a-z), space, and the apostrophe symbol
and the blank symbol used by the CTC loss. Then, the aggrega-
tion for character-level representation is as follows:

sk =

∑T
i=1 πk,ihi + τ∑T
i=1 πk,i + τ

(2)

s =
(
s1

T | . . . | sK
T
)T (3)

where τ is a constant added to avoid divergence. All the
character-level representations are concatenated as s, and then
it’s passed through the locally-connected layer, which has K-
part fully-connected layers for reducing dimensions and taking
character-level affine transformation.

ek = f(Wksk + bk) (4)

e =
(
e1

T | . . . | eK
T
)T (5)

Where Wk and bk indicate trainable parameters with D2 ×D1

and D2 dimensions respectively and f(·) means a non-linear
activation function. Finally, we can obtain an utterance-level
embedding e (See Table 1).

2.3. Objective functions

In our work, we used various objective functions. The first one
is the classification loss based on softmax, which is formulated
by a multi-class cross-entropy loss. Over the last few years,
the different variants have been proposed to overcome the
limitations of the standard softmax. We employed some of
them in our systems. Secondly, we used end-to-end based
losses, which directly optimize the distance metrics such
as Euclidean or Cosine distance and exactly imitate the test
scenario during training. The objective functions used in our
systems are followed as:

Short-duration Speaker Verification Challenge 2020 Technical Report

• Standard Softmax

• Additive Margin Softmax (AM-Softmax) [16, 17]

• Additive Angular Margin Softmax (AAM-Softmax) [18]

• Angular Prototypical Loss (A-Prototypical) [11]

• Generalized End-to-End Loss (GE2E) [19]

2.4. Back-end

In the back-end module, we only used cosine similarity as a
scoring method between the two speaker embeddings. Neither
LDA nor WCCN was applied, and the results of PLDA were
not reported in this works because we did not observe better
performance.

2.5. Score normalization

To minimize the domain mismatch (e.g. languages, recording
environments, etc.) between the training and the evaluation set
and to normalize the distribution of scores during fusion be-
tween different models, we used the score normalization tech-
nique, which was the Adaptive Symmetric Score Normalization
(AS-Norm) [20]. We selected speaker-phrase dependent mod-
els in DeepMine Task1 Train Partition (i.e. in-domain training
data) as cohort set and used the most similar top 300 scoring
files to calculate normalization variables of enrollment and test
sets respectively.

2.6. Score compensation

Instead of TI-SV’s approaches learned via maximizing the
between-class (inter-speaker) difference and minimizing the
within-class (intra-speaker) variation at the same time, we
firstly focused on separating each class well and then fused
the two results later by using the score compensation approach.
First, we define the posteriors of the phrase as follows:

uX =
(
P (Ũ = u1|X) , . . . , P (Ũ = uM |X)

)T
(6)

M∑
j=1

p(Ũ = uj |X) = 1 (7)

where the set Ũ = {uj | uj is j
thphrase, 1 ≤ j ≤ M},

M is the number of phrase types in TD-SV’s dataset, X is
an acoustic feature such as MFCCs. We estimate the poste-
rior p(Ũ = uj |X) using softmax layers of TDNN-based net-
work. The architecture of this network is identical to that of
TDNN-based front-end described as Section 2.1, but composed
of smaller size layers to prevent overfitting: the five frame-
level TDNN layers with {1536, 512, 512, 256, 256} size, the
character-level pooling layer with (256 × 29) size, and a soft-
max output layer with M size (See Table 1). For training the
network, we used the DeepMine Task1 Train Partition which
includes 10 types of phrases. Finally, we compute the compen-
sation factor and the total score between X and Y as follows:

cphrX,Y = uX
T uY (8)

sX,Y = s̃spkX,Y + αcphrX,Y (9)

where cphrX,Y is compensation factor, s̃spkX,Y is the normalized
(AS-Norm) score between embeddings of X and Y, α is a scale
factor, and sX,Y is the total score.

3. Experimental conditions
3.1. Training condition

According to the fixed training condition of the challenge, we
used the designated datasets for training our systems and uti-
lized RSR2015 dataset [21] as a validation set for monitoring.
The training set for each system was the combination of differ-
ent datasets and each training dataset is described as follows.

3.1.1. DeepMine (Task 1 Train Partition)

This is the main dataset for Task 1, i.e., in-domain data, of
the SdSV Challenge. It contains 101,063 utterances from 963
speakers, which has five Persian phrases as well as five English.
We used it for training (1) speaker embedding networks and (2)
the posterior estimator network, and also as (3) cohort set to
calculate parameters of AS-Norm.

3.1.2. VoxCeleb1 & 2

The training data includes VoxCeleb1 [22] and VoxCeleb2 [23].
We only used the development sets of both datasets, which con-
sist of 148,642 and 1,092,009 utterances from 1,211 and 5,994
speakers respectively. In our systems, they were used to train
the speaker embedding networks.

3.1.3. LibriSpeech

To train the CTC-based ASR model, namely Jasper, which
was utilized in character-level pooling and for estimating the
posterior of phrase, we used the train-clean/other sets of Lib-
riSpeech corpus [24], which comprises 281,241 utterances from
2,338 speakers. Additionally, in some of our systems, we em-
ployed them for training speaker embedding networks.

3.1.4. DeepMine (Task 2 Train Partition)

This is the main dataset for Task 2 of the SdSV Challenge. It
includes 85,764 utterances from 588 speakers, which has text-
independent Persian utterances. We used it for training the
speaker embedding networks in case of only Task 2.

3.2. Trial condition

3.2.1. Task 1: Text-dependent speaker verification

According to the trial condition of the challenge, the enrollment
was accomplished using three utterances of a specific phrase
for each model and among four types of trials in the TD-SV
task, only Target-Correct, where the target speaker utters the
correct pass-phrase, was considered as target and the rest was
an imposter. The whole set of trials was divided into two sub-
sets: a progress subset (30%), and an evaluation subset (70%).
The progress subset was used to monitor progress on the leader-
board, while the evaluation subset was used for the official re-
sults.

3.2.2. Task 2: Text-independent speaker verification

In the trial set of Task 2, The enrollment models were obtained
using one to several utterances assigned from the SdSV chal-
lenge. Similar to Task 1, The test set included two subsets: a
progress subset (30%), and an evaluation subset (70%) for the
same purpose as task 1.

Short-duration Speaker Verification Challenge 2020 Technical Report

Table 3: Task 1. Results on the Trial Subsets for the SdSV Challenge 2020 without AS-Norm & Score Compensation. TDT: Text-
Dependent Training, CLP: Character-Level Pooling, SP: Statistics Pooling, GVP: GhostVLAD Pooling, SAP: Self-Attentive Pooling.
Deep1: DeepMine Task1, Vox1: VoxCeleb1, Vox2: VoxCeleb2, Libri: LibriSpeech.

Front-End Objectives Pooling Training Dataset Progress subset Evaluation subset

MinDCF EER[%] MinDCF EER[%]

1
TDNN Softmax CLP

Deep1 0.3755 9.19 0.3775 9.18
2 Deep1 / Vox1 0.3571 8.45 0.3585 8.48
3 Deep1 / Vox1 / Vox2 0.4044 8.97 0.4066 9.00

4 TDNN Softmax (TDT) CLP Deep1 0.3547 8.82 0.3554 8.88

5
TDNN Softmax SP

Deep1 0.8679 17.18 0.8688 17.25
6 Deep1 / Vox1 0.7636 14.37 0.7641 14.45
7 Deep1 / Vox1 / Vox2 0.6511 12.71 0.6539 12.77

8 ResNet34 Softmax GVP Vox2 0.8891 14.84 0.8897 14.87

9 ResNet34 AAM-Softmax SAP Deep1 / Vox1 / Vox2 0.9030 16.09 0.9021 16.12
10 Deep1 / Vox1 / Vox2 / Libri 0.9157 16.39 0.9159 16.45

11 ResNet34 AM-Softmax SAP Deep1 / Vox1 / Vox2 0.8944 15.76 0.8931 15.84
12 Deep1 / Vox1 / Vox2 / Libri 0.9195 16.42 0.9181 16.47

13 ResNet34 A-Prototypical SAP Vox2 0.7957 13.35 0.7973 13.33
14 Deep1 / Vox1 / Vox2 0.8659 15.92 0.8652 15.98

15 ResNet34 GE2E SAP Deep1 / Vox1 / Vox2 0.9226 16.39 0.9212 16.45

16 x-vector baseline (provided by Organizers in Task 1 [1]) 0.5290 9.05 0.5287 9.05

Table 4: Task 1. Results on the Trial Subsets for the SdSV Challenge 2020 with AS-Norm & Score Compensation and The Fusion.
The Fusion is equal-weighted average.

Front-End Objectives Pooling Training Dataset Progress subset Evaluation subset

MinDCF EER[%] MinDCF EER[%]

1
TDNN Softmax CLP

Deep1 0.2164 5.79 0.2185 5.82
2 Deep1 / Vox1 0.1845 4.72 0.1856 4.80
3 Deep1 / Vox1 / Vox2 0.1892 4.91 0.1918 4.98

4 TDNN Softmax (TDT) CLP Deep1 0.2327 5.88 0.2333 5.98

5
TDNN Softmax SP

Deep1 0.2540 7.35 0.2554 7.42
6 Deep1 / Vox1 0.2069 5.54 0.2085 5.63
7† Deep1 / Vox1 / Vox2 0.1730 4.49 0.1753 4.55

8 ResNet34 Softmax GVP Vox2 0.1993 4.59 0.2017 4.65

9 ResNet34 AAM-Softmax SAP Deep1 / Vox1 / Vox2 0.1327 3.15 0.1332 3.21
10 Deep1 / Vox1 / Vox2 / Libri 0.1321 3.30 0.1325 3.33

11 ResNet34 AM-Softmax SAP Deep1 / Vox1 / Vox2 0.1299 3.13 0.1307 3.18
12 Deep1 / Vox1 / Vox2 / Libri 0.1387 3.53 0.1395 3.58

13 ResNet34 A-Prototypical SAP Vox2 0.1762 3.99 0.1769 3.96
14 Deep1 / Vox1 / Vox2 0.1647 3.83 0.1654 3.85

15 ResNet34 GE2E SAP Deep1 / Vox1 / Vox2 0.1768 4.08 0.1778 4.07

16 x-vector baseline (provided by Organizers in Task 1 [1]) 0.5290 9.05 0.5287 9.05

17 i-vector/HMM baseline (provided by Organizers in Task 1 [1]) 0.1472 3.47 0.1464 3.49

18 Fusion of TDNNs [1-7] 0.1242 3.50 0.1257 3.55

19 Fusion of ResNet34s [8-14] 0.0940 2.40 0.0942 2.42

20‡ Fusion of all systems [1-14] 0.0771 2.18 0.0785 2.23
† The single system we submitted.
‡ The primary system we submitted.

Short-duration Speaker Verification Challenge 2020 Technical Report

Table 5: Task 2. Results on the Trial Subsets for the SdSV Challenge 2020. Deep2: DeepMine Task2.

Front-End Objectives Pooling Training Dataset Progress subset Evaluation subset

MinDCF EER[%] MinDCF EER[%]

21 TDNN Softmax SP Deep2 / Vox1 / Vox2 0.3015 6.02 0.3005 6.03
22† ResNet34 Softmax GVP Vox2 0.2451 4.88 0.2438 4.88

23 x-vector baseline (provided by Organizers in Task 2 [1]) 0.4319 10.67 0.4324 10.67

24‡ Fusion of all systems [21-22] (weighted average∗) 0.2078 3.96 0.2073 3.95
† The single system we submitted.
‡ The primary system we submitted.
* The weights were hand-picked.

4. Analysis
We analyzed two experimental scenarios in only Task 1. In
Task 1, firstly we verified the feasibility and effectiveness of
the character-level pooling strategy for TD-SV task through the
results of the progress and evaluation subsets (Table 3). In the
second experiment, we applied AS-Norm and score compensa-
tion to all the systems we used in the first experiment, to fur-
ther boost the performance. Also, we fused different systems
and confirmed the best primary system and single system on
the progress and evaluation subsets in terms of MinDCF, which
was the main metric for the challenge (Table 4). Additionally,
we reported the results submitted to task 2 (Table 5), and the
analysis of task 2 was omitted. No preprocessing such as data
augmentation or VAD were applied to the training and trial data
for both tasks.

4.1. Analysis of character-level pooling method in Task 1

Each subsystem (1-15) was a composite of different front-ends,
pooling techniques, objectives, and training datasets described
in Section 2 and 3.1. Among them, system (5) utilized text-
dependent training (TDT), which was jointly trained by com-
bined classes of speaker and phrase (i.e., speakers × phrases
classes). In systems of (5-16), phrase information was not
considered, since they were trained for TI-SV. For the reasons
stated in Section 2.2, the character-level pooling methods (sys-
tems 1-4) showed improved performances compared with other
systems in terms of 0.3554 MinDCF (system 4) and 8.48 EER
(system 2) on the challenge’s evaluation subsets.

4.2. Results using AS-Norm & compensation in Task 1

We used AS-Norm and score compensation described in Sec-
tions 2.6 and 2.7 respectively, for improvement of perfor-
mances. As you can see in Table 4, the performance of all
systems was improved significantly. In particular, the perfor-
mances of systems that didn’t consider the lexical context (5-
15) increased greatly, compared to the character-level pooling
systems (1-4), which showed minor improvement. The best
performance of a single system was 0.1307 MinDCF and 3.18
EER on the evaluation subsets (system 11). Finally, we fused
different models, which were TDNN-based (18), ResNet-based
(19), and all systems (20). Overall, the performance of ResNet-
based systems outperformed TDNN-based networks in the case
of both single systems and fusions, and the best primary system
was the fusion of all systems. It obtained 0.0785 MinDCF and
2.23% EER on the evaluation subset.

5. Conclusions
the submission of Seoul National University Human Interface
Lab (SNU-HIL) to the SdSV Challenge 2020. We propose a
new pooling and score compensation methods that leverage a
CTC-based end-to-end ASR model for taking the lexical con-
tent into account. Our systems contained two front-end ar-
chitectures and acoustic features, and various pooling meth-
ods including our proposal, and different objective functions.
Experiments show that the usage of the proposed character-
level pooling and score compensation methods significantly
enhances text-dependent speaker verification performance. In
Task 1, finally the best performance of the primary system was
obtained through the fusion of all the experimented systems,
which showed 0.0785% MinDCF and 2.23% EER on the chal-
lenge’s evaluation subset.

6. Acknowledgements
This research was supported and funded by the Korean National
Police Agency. [Project Name: Real-time speaker recognition
via voiceprint analysis / Project Number: PA-J000001-2017-
101].

7. References
[1] H. Zeinali, K. A. Lee, J. Alam, and L. Burget, “Short-duration

Speaker Verification (SdSV) challenge 2020: The challenge eval-
uation plan,” arXiv preprint arXiv:1912.06311, 2019.

[2] H. Zeinali, H. Sameti, and T. Stafylakis, “DeepMine speech
processing database: Text-dependent and independent speaker
verification and speech recognition in Persian and English,” in
Proc. The Speaker and Language Recognition Workshop (Speaker
Odyssey), 2018, pp. 386–392.

[3] H. Zeinali, L. Burget, J. Černockỳ et al., “A multi purpose and
large scale speech corpus in persian and english for speaker
and speech recognition: The DeepMine database,” in Proc.
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU), 2019.

[4] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 5329–5333.

[5] J. S. Chung, J. Huh, and S. Mun, “Delving into VoxCeleb: Envi-
ronment invariant speaker recognition,” in Proc. The Speaker and
Language Recognition Workshop (Speaker Odyssey), 2020, to be
published.

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,

Short-duration Speaker Verification Challenge 2020 Technical Report

“The Kaldi speech recognition toolkit,” in Proc. IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2011.

[7] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proc. The 14th Python in Science Conference (SciPy),
vol. 8, 2015.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
A system for large-scale machine learning,” in Proc. Symposium
on Operating Systems Design and Implementation (OSDI), 2016,
pp. 265–283.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic dif-
ferentiation in PyTorch,” in Proc. Conference and Workshop on
Neural Information Processing Systems (NIPS Workshop), 2017.

[11] J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe, C. Ham,
S. Jung, B.-J. Lee, and I. Han, “In defence of metric learning for
speaker recognition,” arXiv preprint arXiv:2003.11982, 2020.

[12] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive
speaker embeddings for text-independent speaker verification,” in
Proc. Conference of the International Speech Communication As-
sociation (INTERSPEECH), 2018, pp. 3573–3577.

[13] W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, “Utterance-
level aggregation for speaker recognition in the wild,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 5791–5795.

[14] M. H. Han, W. H. Kang, S. H. Mun, and N. S. Kim, “Informa-
tion preservation pooling for speaker embedding,” in Proc. The
Speaker and Language Recognition Workshop (Speaker Odyssey),
2020, to be published.

[15] J. Li, V. Lavrukhin, B. Ginsburg, R. Leary, O. Kuchaiev, J. M. Co-
hen, H. Nguyen, and R. T. Gadde, “Jasper: An end-to-end convo-
lutional neural acoustic model,” in Proc. Conference of the Inter-
national Speech Communication Association (INTERSPEECH),
2019, pp. 71–75.

[16] F. Wang, J. Cheng, W. Liu, and H. Liu, “Additive margin softmax
for face verification,” IEEE Signal Processing Letters, vol. 25,
no. 7, pp. 926–930, 2018.

[17] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and
W. Liu, “Cosface: Large margin cosine loss for deep face recogni-
tion,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 5265–5274.

[18] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 4690–4699.

[19] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized
end-to-end loss for speaker verification,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 4879–4883.

[20] P. Matejka, O. Novotnỳ, O. Plchot, L. Burget, M. D. Sánchez,
and J. Cernockỳ, “Analysis of score normalization in multilingual
speaker recognition.” in Proc. Conference of the International
Speech Communication Association (INTERSPEECH), 2017, pp.
1567–1571.

[21] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent speaker
verification: Classifiers, databases and RSR2015,” Speech Com-
munication, vol. 60, pp. 56–77, 2014.

[22] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: a
large-scale speaker identification dataset,” in Proc. Conference
of the International Speech Communication Association (INTER-
SPEECH), 2017, pp. 2616–2620.

[23] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep
speaker recognition,” in Proc. Conference of the International
Speech Communication Association (INTERSPEECH), 2018, pp.
1086––1090.

[24] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an ASR corpus based on public domain audio books,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

	 Introduction
	 System components description
	 Front-end
	 TDNN-based architecture
	 ResNet-based architecture

	 Pooling methods
	 Character-level pooling

	 Objective functions
	 Back-end
	 Score normalization
	 Score compensation

	 Experimental conditions
	 Training condition
	 DeepMine (Task 1 Train Partition)
	 VoxCeleb1 & 2
	 LibriSpeech
	 DeepMine (Task 2 Train Partition)

	 Trial condition
	 Task 1: Text-dependent speaker verification
	 Task 2: Text-independent speaker verification

	 Analysis
	 Analysis of character-level pooling method in Task 1
	 Results using AS-Norm & compensation in Task 1

	 Conclusions
	 Acknowledgements
	 References

